某網(wǎng)站體育版塊足球欄目組發(fā)起了“射手的連續(xù)進(jìn)球與射手在場(chǎng)上的區(qū)域位置有關(guān)系”的調(diào)查活動(dòng),在所有參與調(diào)查的人中,持“有關(guān)系”“無關(guān)系”“不知道”態(tài)度的人數(shù)如表所示:

 
 
有關(guān)系
 
無關(guān)系
 
不知道
 
40歲以下
 
800
 
450
 
200
 
40歲以上(含40歲)
 
100
 
150
 
300
 
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取n個(gè)人,已知從持有關(guān)系態(tài)度的人中抽取45人,求n的值.
(2)在持“不知道”態(tài)度的人中,用分層抽樣的方法抽取10人看作一個(gè)總體.①?gòu)倪@10人中選取3人,求至少一人在40歲以下的概率;②從這10人中人選取3人,若設(shè)40歲以下的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

(1)100;(2)①;②

解析試題分析:
解題思路:(1)根據(jù)分層抽樣的特點(diǎn)“等比例抽樣”求解即可;(2)①利用古典概型概率公式以及對(duì)立事件概率公式求解;②利用超幾何分布的概率公式求概率,再求期望即可.
規(guī)律總結(jié):1.遇到“至少”、“至多”,且正面情況較多時(shí),可以考慮對(duì)立事件的概率;2.利用概率或隨機(jī)變量的分布列以及期望、方差解決應(yīng)用題時(shí),要注意隨機(jī)變量的實(shí)際意義.
試題解析:(1)由題意,得
∴n=100                                        
(2)設(shè)所選取的人中有m人在40歲以下
,解得m=4                          
①記“至少一人在40歲以下”為事件A
                                   
②X的可能取值為0,1,2,3
  
                     
∴x的分布列為

X
0
1
2
3
P




 
.
考點(diǎn):1.分層抽樣;2.超幾何分布;3.離散型隨機(jī)變量的分布列與期望.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了調(diào)查甲、乙兩種品牌商品的市場(chǎng)認(rèn)可度,在某購(gòu)物網(wǎng)點(diǎn)隨機(jī)選取了14天,統(tǒng)計(jì)在某確定時(shí)間段的銷量,得如下所示的統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖求:
(1)甲、乙兩種品牌商品銷量的中位數(shù)分別是多少?  
(2)甲品牌商品銷量在[20,50]間的頻率是多少?  
(3)甲、乙兩個(gè)品牌商品哪個(gè)更受歡迎?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了整頓道路交通秩序,某地考慮將對(duì)行人闖紅燈進(jìn)行處罰.為了了解市民的態(tài)度,在普通行人中隨機(jī)選取了200人進(jìn)行調(diào)查,得到如下數(shù)據(jù):

處罰金額(元)
0
5
10
15
20
會(huì)闖紅燈的人數(shù)
80
50
40
20
10
若用表中數(shù)據(jù)所得頻率代替概率.現(xiàn)從這5種處罰金額中隨機(jī)抽取2種不同的金額進(jìn)行處罰,在兩個(gè)路口進(jìn)行試驗(yàn).
(Ⅰ)求這兩種金額之和不低于20元的概率;
(Ⅱ)若用X表示這兩種金額之和,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某小學(xué)四年級(jí)男同學(xué)有45名,女同學(xué)有30名,老師按照分層抽樣的方法組建了一個(gè)5人的課外興趣小組.
(Ⅰ)求某同學(xué)被抽到的概率及課外興趣小組中男、女同學(xué)的人數(shù);
(Ⅱ)經(jīng)過一個(gè)月的學(xué)習(xí)、討論,這個(gè)興趣小組決定選出兩名同學(xué)做某項(xiàng)實(shí)驗(yàn),方法是先從小組里選出1名同學(xué)做實(shí)驗(yàn),該同學(xué)做完后,再?gòu)男〗M內(nèi)剩下的同學(xué)中選一名同學(xué)做實(shí)驗(yàn),求選出的兩名同學(xué)中恰有一名女同學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

從某校隨機(jī)抽取100名學(xué)生,獲得了他們一周課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表和頻率分布直方圖:

(1)從該校隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生該周課外閱讀時(shí)間少于12小時(shí)的概率;
(2)求頻率分布直方圖中的a,b的值;
(3)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,試估計(jì)樣本中的100名學(xué)生該周課外閱讀時(shí)間的平均數(shù)在第幾組(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下

 


合計(jì)
需要
40
30
 
不需要
160
270
 
合計(jì)
 
 
 
(1)將表格填寫完整,并估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(2)能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)系?
(3)根據(jù)(2)的結(jié)論,能否提出更好的調(diào)查方法估計(jì)該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說明理由。
附表:
P(K2≥k)
0.050
0.010
0.001
k
3.841
6.635
10.828
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某地最近十年糧食需求量逐年上升,下表是部分統(tǒng)計(jì)數(shù)據(jù):

年份
2004
2006
2008
2010
2012
需求量(萬(wàn)噸)
236
246
257
276
286
 
(1)利用所給數(shù)據(jù)求年需求量與年份之間的回歸直線方程x+
(2)利用(1)中所求出的直線方程預(yù)測(cè)該地2014年的糧食需求量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某車間加工零件的數(shù)量與加工時(shí)間的統(tǒng)計(jì)數(shù)據(jù)如表:

零件數(shù)(個(gè))
10
20
30
加工時(shí)間(分鐘)
21
30
39
現(xiàn)已求得上表數(shù)據(jù)的回歸方程中的值為0.9,則據(jù)此回歸模型可以預(yù)測(cè),加工100個(gè)零件所需要的加工時(shí)間約為(   )
A.112分鐘       B.102分鐘       C.94分鐘       D.84分鐘

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

學(xué)校為了調(diào)查學(xué)生在課外讀物方面的支出情況,抽取了一個(gè)容量為n的樣本,其頻率分布直方圖如圖2所示,其中支出在元的同學(xué)有30人,則n的值為      。

查看答案和解析>>

同步練習(xí)冊(cè)答案