在數(shù)列{an}中,a1=
1
6
,an=
Sn-1
2+3+4+…+n
(n≥2)
其中Sn表示數(shù)列的前n項(xiàng)和.
(Ⅰ)分別求a2,a3,a4的值;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式an的表達(dá)式,并予以證明.
(本小題滿分14分)
(Ⅰ)因?yàn)?span mathtag="math" >a1=
1
6
,an=
Sn-1
2+3+4+…+n
(n≥2)

所以n=2時(shí)a2=
S1
2
=
1
12
,a2=
1
12

n=3時(shí)a3=
S2
2+3
=
a1+a2
2+3
=
1
6
 +
1
12
5
=
1
20
,a3=
1
20

n=4時(shí)a4=
S3
2+3+4
=
a1+a2+a4
2+3+4
=
1
30
,a4=
1
30
…(3分)
(Ⅱ)由(Ⅰ)猜想數(shù)列{an}的通項(xiàng)公式an=
1
(n+1)(n+2)
…(5分)
以下用數(shù)學(xué)歸納法證明:①n=1時(shí),a1=
1
6
,命題成立;
②假設(shè)n=k(k≥1)時(shí)成立,即ak=
1
(k+1)(k+2)
成立…(7分)
由已知ak=
Sk-1
2+3+4+…+k

推得:SK-1=(2+3+…+k)•ak=
(k-1)(k+2)
2
1
(k+1)(k+2)
=
k-1
2(k+1)

成立…(9分)
那么,當(dāng)n=k+1時(shí),ak+1=
Sk
2+3+…+k+(k+1)
=
Sk-1+ak
k(k+3)
2
=
k-1
2(k+1)
+
1
(k+1)(k+2)
k(k+3)
2

=
k(k+1)
k(k+1)(k+2)(k+3)
=
1
(k+2)(k+3)

則n=k+1時(shí),an=
1
(n+1)(n+2)
也成立.…(14分)
綜上可知,對(duì)任意n∈N,an=
1
(n+1)(n+2)
成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,
a
 
1
=1
,an=
1
2
an-1+1
(n≥2),則數(shù)列{an}的通項(xiàng)公式為an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a 1=
1
3
,并且對(duì)任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{
an
n
}的前n項(xiàng)和為Tn,證明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a=
12
,前n項(xiàng)和Sn=n2an,求an+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=a,前n項(xiàng)和Sn構(gòu)成公比為q的等比數(shù)列,________________.

(先在橫線上填上一個(gè)結(jié)論,然后再解答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省汕尾市陸豐市碣石中學(xué)高三(上)第四次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在數(shù)列{an}中,a,并且對(duì)任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{}的前n項(xiàng)和為Tn,證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案