向量
m
=(λ-1,1),
n
=(λ-2,2),若
m
,則λ=
 
;若(
m
+
n
)⊥(
m
-
n
),則λ=
 
考點:數(shù)量積判斷兩個平面向量的垂直關(guān)系,平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:根據(jù)向量平行與垂直的坐標(biāo)運算,列出方程,求出λ的值即可.
解答: 解:當(dāng)
m
時,2×(λ-1)-1×(λ-2)=0,
解得λ=0;
當(dāng)(
m
+
n
)⊥(
m
-
n
)時,
m
+
=(2λ-3,3),
m
-
n
=(1,-1),
∴(2λ-3)+3×(-1)=0,
解得λ=3.
故答案為:0,3.
點評:本題考查了平面向量的坐標(biāo)運算以及平面向量的平行與垂直的應(yīng)用問題,是基礎(chǔ)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù) f(x)=3x+x-5,則函數(shù) f(x)的零點一定在區(qū)間( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=exlnx在x=1處的切線方程是( 。
A、y=2e(x-1)
B、y=ex-1
C、y=x-e
D、y=e(x-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(3,-2,1),B(4,-5,3),則與向量
AB
平行的一個向量坐標(biāo)為(  )
A、(
1
3
,1,1)
B、(-
1
3
,1,-1)
C、(
1
2
,-
3
2
,1)
D、(-
1
2
,
3
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

k是直線l的斜率,θ是直線l的傾斜角,若30°<θ<90°,則k的取值范圍是( 。
A、0<k<
3
3
B、
3
3
<k<1
C、k>
3
3
D、k<
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算下列定積分:
(1)
1
-2
(
1
2
x+1)dx
;                    (2)
0
-1
xdx
;
(3)
2
1
(1-x)dx;                     (4)
0
sinxdx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊是a,b,c,且a2=b2+c2-bc.
(Ⅰ)求角A的大。
(Ⅱ)若a=
3
,S為△ABC的面積,求
3
3
S+cosBcosC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
x
-log2
1+x
1-x

(1)求f(x)的定義域;
(2)判斷并證明f(x)的奇偶性;
(3)求證:f(x)在(0,1)內(nèi)是減函數(shù),并求使關(guān)系式f(x)<f(
1
2
)
成立的實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=sin(2015π-
π
6
),函數(shù)f(x)=
ax,x>0
f(-x),x<0
,則f(log2
1
6
)的值等于( 。
A、
1
4
B、4
C、
1
6
D、6

查看答案和解析>>

同步練習(xí)冊答案