10.已知等比數(shù)列{an}中,a1=$\frac{1}{3}$,a4=$\frac{1}{81}$.
(1)Sn為{an}的前n項(xiàng)和,證明:2Sn+an=1;
(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列{$\frac{1}{_{n}}$}的前n項(xiàng)和.

分析 (1)設(shè)等比數(shù)列{an}的公比為q,由a1=$\frac{1}{3}$,a4=$\frac{1}{81}$.可得$\frac{1}{81}$=$\frac{1}{3}×{q}^{3}$,解得q.再利用等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式即可證明.
(2)log3an=$lo{g}_{3}{3}^{-n}$=-n.可得bn=-1-2-…-n,于是$\frac{1}{_{n}}$=-2$(\frac{1}{n}-\frac{1}{n+1})$,利用“裂項(xiàng)求和”即可得出.

解答 (1)證明:設(shè)等比數(shù)列{an}的公比為q,∵a1=$\frac{1}{3}$,a4=$\frac{1}{81}$.∴$\frac{1}{81}$=$\frac{1}{3}×{q}^{3}$,解得q=$\frac{1}{3}$.
∴an=$(\frac{1}{3})^{n}$,Sn=$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$=$\frac{1}{2}(1-\frac{1}{{3}^{n}})$,
∴2Sn+an=$1-\frac{1}{{3}^{n}}$+$\frac{1}{{3}^{n}}$=1,
∴2Sn+an=1.
(2)解:log3an=$lo{g}_{3}{3}^{-n}$=-n.
bn=log3a1+log3a2+…+log3an=-1-2-…-n=-$\frac{n(n+1)}{2}$,
∴$\frac{1}{_{n}}$=-2$(\frac{1}{n}-\frac{1}{n+1})$,
∴數(shù)列{$\frac{1}{_{n}}$}的前n項(xiàng)和=-2$[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=-2$(1-\frac{1}{n+1})$
=$\frac{-2n}{n+1}$.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、對(duì)數(shù)的運(yùn)算性質(zhì)、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的圖象如圖所示.
(1)求A,ω及φ的值;
(2)若tanα=2,求f($\frac{α}{2}$+$\frac{π}{8}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.計(jì)算下列各式的值:
(1)$\frac{tan(-135°)}{sin(-450°)+cos240°}$;
(2)sin(-$\frac{7π}{2}$)+cos$\frac{13π}{3}$-tan$\frac{23π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若sinα=$\frac{3}{5}$,則
①sin(180°-α)=$\frac{3}{5}$;
②sin(π+α)=-$\frac{3}{5}$;
③sin(-α)=-$\frac{3}{5}$;
④sin(7π-α)=$\frac{3}{5}$;
⑤cos(90°-α)=$\frac{3}{5}$;
⑥cos($\frac{π}{2}$+α)=-$\frac{3}{5}$;
⑦cos($\frac{3π}{2}$+α)=$\frac{3}{5}$;
⑧cos(270°-α)=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)集合A={x|x2-2x≥0},B={x|-1<x≤2},則(∁RA)∩B=( 。
A.{x|-1≤x≤0}B.{x|0<x<2}C.{x|-1<x<0}D.{x|-1<x≤0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知平面內(nèi)A,B兩點(diǎn)的坐標(biāo)分別為(2,2),(0,-2),O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P滿足|$\overrightarrow{BP}$|=1,則|$\overrightarrow{OA}+\overrightarrow{OP}$|的最小值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知不等式 ex≥x+1,對(duì)任意的x∈R恒成立.現(xiàn)有以下命題:
①對(duì)?x∈R,不等式e-x>1-x恒成立;
②對(duì)?x∈(0,+∞),不等式ln(x+1)<x恒成立;
③對(duì)?x∈(0,+∞),且x≠1,不等式lnx<x-1恒成立;
④對(duì)?x∈(0,+∞),且x≠1,不等式$\frac{lnx}{x+1}+\frac{1}{x}>\frac{lnx}{x-1}$恒成立.
其中真命題的有①②③④(寫出所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={y|y=2x-1,x∈R},B={x|x2-x-2<0},則( 。
A.-1∈AB.$\sqrt{3}$∉BC.A∩(∁RB)=AD.A∪B=A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.先閱讀參考材料,再解決此問題:
參考材料:求拋物線弧y=x2(0≤x≤2)與x軸及直線x=2圍成的封閉圖形的面積
解:把區(qū)間[0,2]進(jìn)行n等分,得n-1個(gè)分點(diǎn)A($\frac{2i}{n}$,0)(i=1,2,3,…,n-1),過分點(diǎn)Ai,作x軸的垂線,交拋物線于Bi,并如圖構(gòu)造n-1個(gè)矩形,先求出n-1個(gè)矩形的面積和Sn-1,再求$\underset{lim}{n→∞}$Sn-1,即是封閉圖形的面積,又每個(gè)矩形的寬為$\frac{2}{n}$,第i個(gè)矩形的高為($\frac{2i}{n}$)2,所以第i個(gè)矩形的面積為$\frac{2}{n}$•($\frac{2i}{n}$)2;
Sn-1=$\frac{2}{n}$[$\frac{4•{1}^{2}}{{n}^{2}}$+$\frac{4•{2}^{2}}{{n}^{2}}$+$\frac{4•{3}^{2}}{{n}^{2}}$+…+$\frac{4•(n-1)^{2}}{{n}^{2}}$]=$\frac{8}{{n}^{3}}$[12+22+32+…+(n-1)2]=$\frac{8}{{n}^{3}}$•$\frac{n(n-1)(2n-1)}{6}$
所以封閉圖形的面積為$\underset{lim}{n→∞}$$\frac{8}{{n}^{3}}$•$\frac{n(n-1)(2n-1)}{6}$=$\frac{8}{3}$
閱讀以上材料,并解決此問題:已知對(duì)任意大于4的正整數(shù)n,不等式$\sqrt{1-\frac{{1}^{2}}{{n}^{2}}}$+$\sqrt{1-\frac{{2}^{2}}{{n}^{2}}}$+$\sqrt{1-\frac{{3}^{2}}{{n}^{2}}}$+…+$\sqrt{1-\frac{(n-1)^{2}}{{n}^{2}}}$<an恒成立,則實(shí)數(shù)a的取值范圍為[$\frac{π}{4}$,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案