設(shè)函數(shù)f(x)是奇函數(shù),并且在R上為增函數(shù),若0≤θ≤
π
2
時,f(msinθ)+f(1-m)>0恒成立,則實數(shù)m的取值范圍是( 。
分析:根據(jù)函數(shù)f(x)是奇函數(shù),并且在R上為增函數(shù),利用函數(shù)的性質(zhì),我們可將0≤θ≤
π
2
時,f(msinθ)+f(1-m)>0恒成立,轉(zhuǎn)化為m<
1
1-sinθ
恒成立,結(jié)合正弦型函數(shù)的性質(zhì)結(jié)合分析法,我們可得
1
1-sinθ
在0≤θ≤
π
2
時的最小值,進而將恒成立問題轉(zhuǎn)化為最值問題,得到實數(shù)m的取值范圍.
解答:解:∵函數(shù)f(x)是奇函數(shù),并且在R上為增函數(shù),
∴不等式f(msinθ)+f(1-m)>0可化為
f(msinθ)>-f(1-m)
即f(msinθ)>f(m-1)
即msinθ>m-1
即m<
1
1-sinθ
在0≤θ≤
π
2
時恒成立
∵0≤θ≤
π
2
時,1-sinθ的最大值為1,故
1
1-sinθ
的最小值為1
故m<1
即實數(shù)m的取值范圍是(-∞,1)
故選C
點評:本題考查的知識點是函數(shù)奇偶性與函數(shù)的單調(diào)性及恒成立問題,是函數(shù)圖象和性質(zhì)的綜合應(yīng)用,難度為中檔.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函f(x)是定義在R上的周期為3的奇函數(shù),f(1)<1,f(2)=
2a-1a+1
,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•遂寧二模)設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù),使得對于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù),現(xiàn)給出下列命題:
①函數(shù)f(x)=(
12
)x
為R上的1高調(diào)函數(shù);
②函數(shù)f (x)=sin 2x為R上的高調(diào)函數(shù);
③如果定義域是[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實數(shù)m的取值范圍是[2,+∞);
④如果定義域為R的函教f (x)是奇函數(shù),當(dāng)x≥0時,f(x)=|x-a2|-a2,且f(x)為R上的4高調(diào)函數(shù),那么實數(shù)a的取值范圍是[一1,1].
其中正確的命題是
②③④
②③④
 (寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù),使得對于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù),現(xiàn)給出下列命題:
①函數(shù)數(shù)學(xué)公式為R上的1高調(diào)函數(shù);
②函數(shù)f (x)=sin 2x為R上的高調(diào)函數(shù);
③如果定義域是[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實數(shù)m的取值范圍是[2,+∞);
④如果定義域為R的函教f (x)是奇函數(shù),當(dāng)x≥0時,f(x)=|x-a2|-a2,且f(x)為R上的4高調(diào)函數(shù),那么實數(shù)a的取值范圍是[一1,1].
其中正確的命題是________ (寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省徐州三中高三(上)月考數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)函f(x)是定義在R上的周期為3的奇函數(shù),f(1)<1,f(2)=,則a的取值范圍是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省遂寧市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù),使得對于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù),現(xiàn)給出下列命題:
①函數(shù)為R上的1高調(diào)函數(shù);
②函數(shù)f (x)=sin 2x為R上的高調(diào)函數(shù);
③如果定義域是[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實數(shù)m的取值范圍是[2,+∞);
④如果定義域為R的函教f (x)是奇函數(shù),當(dāng)x≥0時,f(x)=|x-a2|-a2,且f(x)為R上的4高調(diào)函數(shù),那么實數(shù)a的取值范圍是[一1,1].
其中正確的命題是     (寫出所有正確命題的序號).

查看答案和解析>>

同步練習(xí)冊答案