【題目】已知函數(shù) ,對a∈R,b∈(0,+∞),使得f(a)=g(b),則b﹣a的最小值為( )
A.
B.
C.
D.
【答案】A
【解析】解:∵f(x)=e2x , g(x)=lnx+ , ∴f﹣1(x)= lnx,g﹣1(x)= ,
令h(x)=g﹣1(x)﹣f﹣1(x)= ﹣ lnx,
則b﹣a的最小值,即為h(x)的最小值,
∵h′(x)=)= ﹣ ,
令h′(x)=0,解得x= ,
∵當x∈(0, )時,h′(x)<0,當x∈( ,+∞)時,h′(x)>0,
故當x= 時,h(x)取最小值1﹣ =1+ ,
故選:A.
【考點精析】關(guān)于本題考查的函數(shù)的值域,需要了解求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實質(zhì)是相同的才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)f(x)=sin(2x+ )圖象上的每個點的橫坐標縮短為原來的一半,縱坐標不變,再將所得圖象向左平移 個單位得到函數(shù)g(x)的圖象.在g(x)圖象的所有對稱中心中,離原點最近的對稱中心為( )
A.(﹣ ,0)
B.( ,0)
C.(﹣ ,0)
D.( ,0)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,點E為正方形ABCD邊CD上異于點C,D的動點,將△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,則下列三個說法中正確的個數(shù)是( )
①存在點E使得直線SA⊥平面SBC
②平面SBC內(nèi)存在直線與SA平行
③平面ABCE內(nèi)存在直線與平面SAE平行.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,滿足(2b﹣c)cosA=acosC.
(1)求角A;
(2)若 ,b+c=5,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax﹣1﹣lnx(a∈R).
(1)當a=1時,求曲線在點(1,0)處的切線方程;
(2)求函數(shù)f(x)在區(qū)間 上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}的前n項和為Sn , 且Sn=n(n+1),n∈N* .
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足: ,求數(shù)列{bn}的通項公式;
(3)令 ,求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是2007年在廣州舉行的全國少數(shù)民族運動會上,七位評委為某民族舞蹈打出的分數(shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別為( )
A.84,4.84
B.84,1.6
C.85,1.6
D.85,4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC.
(1)求證:平面AEC⊥平面ABE;
(2)點F在BE上,若DE∥平面ACF,DC=CE= BC=3,求三棱錐A﹣BCF的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com