已知數(shù)列{an}中,a1=
1
2
,點(n,,2an+1-an)(n∈N*)在直線y=x上.
(Ⅰ)計算a2,a3,a4的值;
(Ⅱ)令bn=an+1-an-1,求證:數(shù)列{bn}是等比數(shù)列;
(Ⅲ)求數(shù)列{an}的通項公式.
(Ⅰ)由題意,2an+1-an=n,又a1=
1
2
,所以2a2-a1=1,解得a2=
3
4
.(2分)
同理a3=
11
8
,a4=
35
16
,(3分)
(Ⅱ)因為2an+1-an=n,
所以bn+1=an+2-an+1-1=
an+1+n+1
2
-an+1-1=
n-an+1-1
2
,(5分)bn=an+1-an-1=an+1-(2an+1-n)-1=n-an+1-1=2bn+1,即
bn+1
bn
=
1
2
(7分)
b1=a2-a1-1=-
3
4
,所以數(shù)列{bn}是以-
3
4
為首項,
1
2
為公比的等比數(shù)列.(9分)
(Ⅲ)由(Ⅱ)知bn=-
3
4
•(
1
2
)n-1
(10分)
∴an+1-an-1=-
3
4
•(
1
2
)n-1
∴an+1-an=-
3
4
•(
1
2
)n-1
+1(11分)
∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)(12分)
=
1
2
-
3
4
[(
1
2
)
0
+(
1
2
)
1
+(
1
2
)
2
++(
1
2
)
n-2
]
+n-1
=n-2+
3
2n
(14分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,則
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=
an
1+2an
,則{an}的通項公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{
2n
an
}
的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=
1
2
,Sn
為數(shù)列的前n項和,且Sn
1
an
的一個等比中項為n(n∈N*
),則
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=1,2nan+1=(n+1)an,則數(shù)列{an}的通項公式為(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步練習冊答案