O為△ABC所在平面上K*s^5#u的一點(diǎn)且滿足|2+|2=|2+|2=|2+|2 ,則O為
A.△ABCK*s^5#u的三條高線K*s^5#u的交點(diǎn)           B.△ABCK*s^5#u的三條中線K*s^5#u的交點(diǎn)
C.△ABCK*s^5#u的三條邊K*s^5#u的垂直平分線K*s^5#u的交點(diǎn) △ABCK*s^5#u的三條內(nèi)角平分線K*s^5#u的交點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O為△ABC所在平面內(nèi)一點(diǎn),滿足|
OA
|2+|
BC
|2=|
OB
|2+|
CA
|2=|
OC
|2+|
AB
|2
,則點(diǎn)O是△ABC的( 。
A、外心B、內(nèi)心C、垂心D、重心

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O為△ABC所在平面外一點(diǎn),且
OA
=
a
OB
=
b
,
OC
=
c
,OA,OB,OC兩兩互相垂直,H為△ABC的垂心,試用
a
,
b
,
c
表示
OH

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O為△ABC所在平面內(nèi)的一點(diǎn),且滿足(
OB
-
OC
)•(
OB
+
OC
)•(
OB
+
OC
-2
OA
)=0,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

老師告訴學(xué)生小明說(shuō),“若O為△ABC所在平面上的任意一點(diǎn),且有等式
OP
=
OA
+λ(
AB
cosC
|
AB
|
+
AC
cosB
|
AC
|
)
,則P點(diǎn)的軌跡必過(guò)△ABC的垂心”,小明進(jìn)一步思考何時(shí)P點(diǎn)的軌跡會(huì)通過(guò)△ABC的外心,得到的條件等式應(yīng)為
OP
=
OP
=
OB
+
OC
2
+λ(
AB
|
AB
|cosB
+
AC
|
AC
|cosC
)
OP
=
OB
+
OC
2
+λ(
AB
|
AB
|cosB
+
AC
|
AC
|cosC
)
.(用O,A,B,C四個(gè)點(diǎn)所構(gòu)成的向量和角A,B,C的三角函數(shù)以及λ表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

O為△ABC所在平面上的一點(diǎn)且滿足|
OA
|2+|
BC
|2=|
OB
|2+|
CA
|=|
OC
|2+|
AB
|2,則O為( 。
A、△ABCK的三條高線的交點(diǎn)
B、△ABCK的三條中線的交點(diǎn)
C、△的三條邊的垂直平分線的交點(diǎn)
D、△的三條內(nèi)角平分線的交點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案