若命題p:2n-1(n∈Z)是奇數(shù);q:2n+1(n∈Z)是偶數(shù),則下列說法中正確的是( 。
A、¬p為真B、¬q為假
C、p∨q為真D、p∧q為真
考點:復(fù)合命題的真假
專題:簡易邏輯
分析:先判定命題p,q的真假,再利用復(fù)合命題的判定方法即可得出.
解答: 解:∵命題p:2n-1(n∈Z)是奇數(shù),是真命題;
命題q:2n+1(n∈Z)是偶數(shù),是假命題.
∴p∨q為真.
故選:C.
點評:本題考查了復(fù)合命題的判定方法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,四邊形ADEF為平行四邊形,直線FB⊥平面ABCD,AB∥DC,AB⊥BC,AB=BC=FB=1,CD=2.
(Ⅰ)求證:平面CDE⊥平面ABCD;
(Ⅱ)求二面角A-DE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線C的中心在原點,以點A(
2
3
3
,0)為右焦點,以x=
3
6
為右準(zhǔn)線.
(1)求雙曲線C的方程;
(2)設(shè)直線l:y=kx+1與雙曲線交于A、B兩點,若以A、B為直徑的圓經(jīng)過原點,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲乙兩人從4門課程中各選修兩門,則甲乙所選的課程中至少有1門不相同的選法共有( 。┓N.
A、30B、36C、60D、72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx-
π
4
)(A>0,ω>0)的最大值為2,相鄰兩條對稱軸的距離為
π
2
,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線為y=
3
x,則雙曲線的離心率為( 。
A、
3
B、2
C、
5
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點,作EF⊥PB,垂足為F.
(1)求證PA∥平面EBD;
(2)求二面角P-AD-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(π+α)=
3
5
,α為第三象限角,則tanα=( 。
A、
3
4
B、-
3
4
C、
4
3
D、-
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的算法,則輸出的結(jié)果是( 。
A、1
B、
4
3
C、
5
4
D、2

查看答案和解析>>

同步練習(xí)冊答案