已知函數(shù)f(x)=lnx+x2-ax.
(I)若函數(shù)f(x)在其定義域上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(II)當(dāng)a=3時(shí),求出f(x)的極值:
(III)在(I)的條件下,若f(x)≤
1
2
(3x2+
1
x2
-6x)
在x∈(0,1]內(nèi)恒成立,試確定a的取值范圍.
(Ⅰ)函數(shù)f(x)=lnx+x2-ax(x>0),則f′(x)=
1
x
+2x-a(x>0).
∵函數(shù)f(x)在(0,+∞)上是單調(diào)增函數(shù),
∴f′(x)≥0在(0,+∞)上恒成立,即
1
x
+2x-a≥0在(0,+∞)上恒成立.
1
x
+2x≥a.
∵當(dāng)x>0時(shí),
1
x
+2x≥2
2
,當(dāng)且僅當(dāng)
1
x
=2x,即x=
2
2
時(shí)等號(hào)成立.
∴a的取值范圍是(-∞,2
2
];
(Ⅱ)當(dāng)a=3時(shí),f′(x)=
(2x-1)(x-1)
x
(x>0)

當(dāng)0<x<
1
2
或x>1時(shí),f′(x)>0,
當(dāng)
1
2
<x<1時(shí),f′(x)<0
∴f(x)在(0,
1
2
)和(1,+∞)上是增函數(shù),在(
1
2
,1)上是減函數(shù),
∴f(x)極大值=f(
1
2
)=-
5
4
-ln2,f(x)極小值=f(1)=-2
(III)設(shè)g(x)=f(x)-
1
2
(3x2+
1
x2
-6x)
=lnx-
1
2
x2+(3-a)x-
1
2x2

∴g′(x)=(
1
x
-x)+(3-a)+
1
x3

∵a∈(-∞,2
2
],且x∈(0,1]
∴g′(x)>0
∴g(x)在(0,1)內(nèi)為增函數(shù)
∴g(x)max=g(1)=2-a
f(x)≤
1
2
(3x2+
1
x2
-6x)
在x∈(0,1]內(nèi)恒成立,
∴2-a≤0,解得a≥2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時(shí),若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對(duì)任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對(duì)于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時(shí),又稱直線AB存在“中值伴侶切線”.試問(wèn):當(dāng)x≥e時(shí),對(duì)于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線l過(guò)點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫(xiě)出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫(xiě)出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問(wèn)是否存在經(jīng)過(guò)原點(diǎn)的直線l,使得l為曲線C的對(duì)稱軸?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案