【題目】已知對數(shù)函數(shù)過點,.
(1)求的解析式,并指出的定義域;
(2)設(shè),求函數(shù)的零點.
【答案】(1) ,定義域為; (2) 答案見解析
【解析】
(1)設(shè)函數(shù),帶入點可解出a的值,則可得出的解析式.
再將代入函數(shù)f(x)中,由,則可得出的解析式,再根據(jù)對數(shù)函數(shù)的定義可得出的定義域.
(2)將函數(shù)的零點轉(zhuǎn)化為方程的解來求零點,再分類討論當(dāng),,時方程的解.
解:(1)設(shè)函數(shù),∵過點,∴,
解得,∴.
,解不等式組可得的定義域為
(2)函數(shù)的零點是方程的解.
,
因為,所以,所以,即的值域為
若,則方程無解;
若,則,所以,方程有且只有一個解;
若,則,所以,方程有兩個解
綜上所述:若,則無零點; 若,則有且只有一個零點;
若,則有兩個零點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直三棱柱的底面是邊長為6的等邊三角形,是邊上的中點,點滿足,平面平面,求:
(1)側(cè)棱長;
(2)直線與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,,其前項和滿足,其中.
(1)設(shè),證明:數(shù)列是等差數(shù)列;
(2)設(shè),為數(shù)列的前項和,求證:;
(3)設(shè)(為非零整數(shù),),試確定的值,使得對任意,都有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某部門為了解人們對“延遲退休年齡政策”的支持度,隨機(jī)調(diào)查了人,其中男性人.調(diào)查發(fā)現(xiàn)持不支持態(tài)度的有人,其中男性占.分析這個持不支持態(tài)度的樣本的年齡和性別結(jié)構(gòu),繪制等高條形圖如圖所示.
(1)在持不支持態(tài)度的人中,周歲及以上的男女比例是多少?
(2)調(diào)查數(shù)據(jù)顯示,個持支持態(tài)度的人中有人年齡在周歲以下.填寫下面的列聯(lián)表,問能否有的把握認(rèn)為年齡是否在周歲以下與對“延遲退休年齡政策”的態(tài)度有關(guān).
參考公式及數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,,若橢圓經(jīng)過點,且的面積為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)斜率為的直線與以原點為圓心,半徑為的圓交于,兩點,與橢圓交于,兩點,且,當(dāng)取得最小值時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若曲線在點處的切線與曲線切于點,求的值;
(Ⅲ)若恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有兩個零點.
(1)若函數(shù)的兩個零點是和,求的值,并寫出不等式的解集;
(2)當(dāng)時,函數(shù)有兩個零點和,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com