將n2(n≥3)個(gè)正整數(shù)1,2,3,…,n2填入n×n方格中,使得每行、每列、每條對(duì)角線上的數(shù)的和相等,這個(gè)正方形就叫做n階幻方.記f(n)為n階幻方對(duì)角線的和,如右表就是一個(gè)3階幻方,可知f(3)=15,則f(n)=( )
816
357
492

A.
B.
C.
D.n(n2+1)
【答案】分析:欲求n階幻方對(duì)角線上數(shù)之和,只需求每一行上數(shù)之和,由n階幻方定義可知,n階幻方由1到n2,共n2個(gè)連續(xù)自然數(shù)構(gòu)成,且每一行都相等,所以,只需求出所有數(shù)之和,再除以n即可得答案.
解答:解:對(duì)于3階幻方,共由1到32,即1到9這9個(gè)連續(xù)自然數(shù)構(gòu)成,且每一行都相等,
由等差數(shù)列得前n項(xiàng)和公式可得,這9個(gè)數(shù)字之和為=45,
再除以3,即可得出f(3)=15.
一般的n階幻方數(shù)字之和為S=1+2+…+n2=
f(n)==
故選A
點(diǎn)評(píng):本題以幻方題目為載體考查了等差數(shù)列的性質(zhì).幻方的題很有趣味性,它的幻和的公式可記住,便于以后解此類的問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)將連續(xù)n2(n≥3)個(gè)正整數(shù)填入n×n方格中,使其每行.每列.每條對(duì)角線上的數(shù)的和都相等,這個(gè)正方形叫做n階幻方數(shù)陣.記f(n)為n階幻方數(shù)陣對(duì)角線上數(shù)的和,如右圖就是一個(gè)3階幻方數(shù)陣,可知f(3)=15.若將等差數(shù)列:3,4,5,6,…的前16項(xiàng)填入4×4方格中,可得到一個(gè)4階幻方數(shù)陣,則其對(duì)角線上的和f(4)等于( 。
A、44B、42C、40D、36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•肇慶二模)將n2(n≥3)個(gè)正整數(shù)1,2,3,…,n2填入n×n方格中,使得每行、每列、每條對(duì)角線上的數(shù)的和相等,這個(gè)正方形就叫做n階幻方.記f(n)為n階幻方對(duì)角線的和,如右表就是一個(gè)3階幻方,可知f(3)=15,則f(n)=( 。
8 1 6
3 5 7
4 9 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將連續(xù)n2(n≥3)個(gè)正整數(shù)填入n×n方格中,使其每行.每列.每條對(duì)角線上的數(shù)的和都相等,這個(gè)正方形叫做n階幻方數(shù)陣.記f(n)為n階幻方數(shù)陣對(duì)角線上數(shù)的和,如圖就是一個(gè)3階幻方數(shù)陣,可知f(3)=15.若將等差數(shù)列:3,4,5,6,…的前16項(xiàng)填入4×4方格中,可得到一個(gè)4階幻方數(shù)陣,則其對(duì)角線上的和f(4)等于
42
42

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:肇慶二模 題型:單選題

將n2(n≥3)個(gè)正整數(shù)1,2,3,…,n2填入n×n方格中,使得每行、每列、每條對(duì)角線上的數(shù)的和相等,這個(gè)正方形就叫做n階幻方.記f(n)為n階幻方對(duì)角線的和,如右表就是一個(gè)3階幻方,可知f(3)=15,則f(n)=(  )
8 1 6
3 5 7
4 9 2
A.
1
2
n(n2+1)
B.
1
2
n2(n+1)-3
C.
1
2
n2(n2+1)
D.n(n2+1)

查看答案和解析>>

同步練習(xí)冊(cè)答案