設(shè)p:實(shí)數(shù)x滿(mǎn)足(x-3a)(x-a)<0,其中a>0,q:實(shí)數(shù)x滿(mǎn)足
x2-3x≤0
x2-x-2>0

(1)當(dāng)a=1,p且q為真時(shí),求實(shí)數(shù)x的取值范圍;
(2)若?p是?q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
考點(diǎn):必要條件、充分條件與充要條件的判斷
專(zhuān)題:簡(jiǎn)易邏輯
分析:(1)當(dāng)a=1,p且q為真時(shí),則p,q同時(shí)為真,建立條件即可求實(shí)數(shù)x的取值范圍;
(2)利用?p是?q的充分不必要條件,轉(zhuǎn)化為q是p的充分不必要條件,建立條件關(guān)系即可求實(shí)數(shù)a的取值范圍.
解答: 解:(1)當(dāng)a=1時(shí),p:1<x<3,q:2<x≤3,
∵p且q為真,
∴p,q同時(shí)為真,即x滿(mǎn)足
2<x≤3
1<x<3
,
即2<x<3.
(2)∵¬p是¬q的充分不必要條件知,
∴q是p的充分不必要條件,
由p知,即A={x|a<x<3a,a>0},
由q知,B={x|2<x≤3}(10分)
∴B?A,
∴a≤2且3<3a,解得1<a≤2
即實(shí)數(shù)a的取值范圍是(1,2].
點(diǎn)評(píng):本題主要考查充分條件和必要條件的應(yīng)用,利用復(fù)合命題之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,把圓周長(zhǎng)為1的圓的圓心C放在y軸上,頂點(diǎn)A(0,1),一動(dòng)點(diǎn)M從A開(kāi)始逆時(shí)針繞圓運(yùn)動(dòng)一周,記
AM
=x,直線AM與x軸交于點(diǎn)N(t,0),則函數(shù)t=f(x)的圖象大致為(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線3x+4y-5=0與圓x2+y2=4相交于A,B兩點(diǎn),那么弦AB的長(zhǎng)等于(  )
A、3
3
B、2
3
C、
3
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=sin(
π
3
-2x)在(0,π)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明:card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(A∩C)-card(B∩C)+card(A∩B∩C)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解方程:0≤
|x+5|
x2+1
<5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知有窮數(shù)列{an},{bn}對(duì)任意的正整數(shù)n∈N*都有a1bn+a2bn-1+a3bn-2+…+an-1b2+anb1=2n+1-n-2.
(1)若{an}是等差數(shù)列,且首項(xiàng)和公差相等,求證:{bn}是等比數(shù)列.
(2)若{an}是等差數(shù)列,且{bn}是等比數(shù)列,求證:anbn=n•2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=|lgx|,a,b為實(shí)數(shù),且0<a<b.
(1)求方程f(x)=1的解;
(2)若a,b滿(mǎn)足f(a)=f(b),求證:①a•b=1;②
a+b
2
>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
(1)(lg50)2+lg2×lg(50)2+lg22;
(2)2(lg
2
2+lg
2
•lg5+
(lg
2
)2-lg2+1

(3)lg5(lg8+lg1000)+(lg2 
3
2+lg
1
6
+lg0.06.

查看答案和解析>>

同步練習(xí)冊(cè)答案