若實(shí)數(shù)x、y、m滿足|x﹣m|<|y﹣m|,則稱x比y接近m.

(1)若x2﹣1比3接近0,求x的取值范圍;

(2)對(duì)任意兩個(gè)不相等的正數(shù)a、b,證明:a2b+ab2比a3+b3接近;

(3)已知函數(shù)f(x)的定義域D{x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1﹣sinx中接近0的那個(gè)值.寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).

考點(diǎn):

絕對(duì)值不等式的解法;其他不等式的解法.

專題:

計(jì)算題;壓軸題;新定義;轉(zhuǎn)化思想.

分析:

(1)根據(jù)新定義得到不等式|x2﹣1|<3,然后求出x的范圍即可.

(2)對(duì)任意兩個(gè)不相等的正數(shù)a、b,依據(jù)新定義寫出不等式,利用作差法證明:a2b+ab2比a3+b3接近;

(3)依據(jù)新定義寫出函數(shù)f(x)的解析式,

直接寫出它的奇偶性、最小正周期、最小值和單調(diào)性,即可.

解答:

解:(1)|x2﹣1|<3,0≤x2<4,﹣2<x<2

x∈(﹣2,2);

(2)對(duì)任意兩個(gè)不相等的正數(shù)a、b,

,

因?yàn)?sub>,

所以,

即a2b+ab2比a3+b3接近;

(3)

k∈Z,f(x)是偶函數(shù),f(x)是周期函數(shù),

最小正周期T=p,函數(shù)f(x)的最小值為0,

函數(shù)f(x)在區(qū)間單調(diào)遞增,

在區(qū)間單調(diào)遞減,k∈Z.

點(diǎn)評(píng):

本題是新定義題目,直線審題是能夠解題的根據(jù),新定義問題,往往是結(jié)合相關(guān)的知識(shí),利用已有的方法求出所求結(jié)果.注意轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x、y、m滿足|x-m|<|y-m|,則稱x比y接近m.
(1)若x2-1比3接近0,求x的取值范圍;
(2)對(duì)任意兩個(gè)不相等的正數(shù)a、b,證明:a2b+ab2比a3+b3接近2ab
ab
;
(3)已知函數(shù)f(x)的定義域D{x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那個(gè)值.寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y,m滿足|x-m|<|y-m|,則稱x比y靠近m.
(Ⅰ)若x+1比-x靠近-1,求實(shí)數(shù)x的取值范圍;
(Ⅱ)①對(duì)任意x>0,證明:ln(1+x)比x靠近0;②已知數(shù)列{an}的通項(xiàng)公式為an=1+21-n,證明:a1a2a3…an<2e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•煙臺(tái)一模)若實(shí)數(shù)x、y、m滿足|x-m|>|y-m|,則稱x比y遠(yuǎn)離m.若x2-1比1遠(yuǎn)離0,則x的取值范圍是
(-∞,-
2
)∪(
2
,+∞)
(-∞,-
2
)∪(
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y,m滿足|x-m|<|y-m|,則稱x比y更接近m.
(1)若x2比4更接近1,求x的取值范圍;
(2)a>0時(shí),若x2+a比(a+1)x更接近0,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x、y、m滿足|x-m|<|y-m|,則稱x比y接近m.
(1)若2x-1比3接近0,求x的取值范圍;
(2)對(duì)任意兩個(gè)不相等的正數(shù)a、b,證明:a2b+ab2比a3+b3接近2ab
ab

查看答案和解析>>

同步練習(xí)冊(cè)答案