在△ABC中,b=asinC且c=asin(90°﹣B),試判斷△ABC的形狀( 。

 

A.

銳角三角形

B.

等邊三角形

C.

直角三角形

D.

等腰直角三角形

考點(diǎn):

三角形的形狀判斷.

專題:

解三角形.

分析:

在△ABC中,由條件利用余弦定理化簡(jiǎn)可得 a2=b2+c2,故△ABC為直角三角形,且sinC=.再由b=asinC,可得 sinC=,可得 c=b,故△ABC也是等腰三角形.

綜合可得結(jié)論.

解答:

解:∵在△ABC中,c=asin(90°﹣B)=a•cosB,則由余弦定理可得 c=a•

化簡(jiǎn)可得 a2=b2+c2,故△ABC為直角三角形,且sinC=

再由b=asinC,可得 sinC=,∴c=b,故△ABC也是等腰三角形.

綜上可得,△ABC為等腰直角三角形,

故選D.

點(diǎn)評(píng):

本題主要考查余弦定理、直角三角形中的邊角關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,已知向量m=(2sin
A+C
2
,-1)
,n=(2sin
A+C
2
,cos2B+
7
2
)
,且m•n=0.
(I)求角B的大。
(II)若sinA,sinB,sinC成等差數(shù)列,且
BA
BC
=18
,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若A=105°,C=30°,b=1,則c=
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,角A,B,C的對(duì)邊為a,b,c且8(sin
B+C
2
)2-2cos2A=7

求:(1)角A的大;
(2)若a=
3
,b+c=3
求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若a=7,b=8,cosC=
1314
,則c是
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:同步題 題型:填空題

在△ABC中,b=a,B=2A,則△ABC為(    )三角形。

查看答案和解析>>

同步練習(xí)冊(cè)答案