已知f(x)=|x|-|x-1|,則f(f(0))=
 
考點(diǎn):函數(shù)的值
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:利用f(x)=|x|-|x-1|,代入計(jì)算可得f(f(0)).
解答: 解:∵f(x)=|x|-|x-1|,
∴f(0)=-1,
∴f(f(0))=f(-1)=1-2=-1.
故答案為:-1.
點(diǎn)評:本題考查函數(shù)值的計(jì)算,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用錯位相減法求bn=n2×2n的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)滿足不等式組
x+3y-3≤0
x-y-3≤0
x≥0
,則2x-y的取值范圍是( 。
A、[-1,3]
B、[-3,-1]
C、[-1,6]
D、[-6,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩形ABCD中A(1,2),B(2,5),且對角線的交點(diǎn)在x軸上,求C、D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種生產(chǎn)設(shè)備購買時費(fèi)用為10萬元,每年的設(shè)備管理費(fèi)共計(jì)9千元,這種生產(chǎn)設(shè)備的維修費(fèi)各年為:第一年2千元,第二年4千元,第三年6千元,而且以后以每年2千元的增量逐年遞增.
(1)若這種生產(chǎn)設(shè)備使用x年后總費(fèi)用為y元,求y與x的函數(shù)關(guān)系式.
(2)問這種生產(chǎn)設(shè)備最多使用多少年報(bào)廢最合算(即使用多少年的年平均費(fèi)用最少)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
a
-
1
x
(a>0,x>0),若f(x)在[s,t]上的值域也是[s,t](s≠t),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,A=
π
3
,a=2,若△ABC有兩解,則邊b可以是( 。
A、1
B、2
C、
3
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)與g(x)同在一個區(qū)間內(nèi)取同一個自變量時,同時取得相同的最小值,則稱這兩個函數(shù)為“兄弟函數(shù)”,已知函數(shù)f(x)=x2+bx+c(b,c∈R)與g(x)=
x2-x+1
x
是定義在區(qū)間[
1
2
,2]上的“兄弟函數(shù)”,那么f(x)在區(qū)間[
1
2
,2]上的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列敘述正確的是( 。
①x∈[-π,π]時,函數(shù)y=sinx與y=x的圖象有三個交點(diǎn);
②x∈[-π,π]時,函數(shù)y=sinx與y=x的圖象有一個交點(diǎn);
③x∈(-
π
2
π
2
)時,函數(shù)y=tanx與y=x的圖象有三個交點(diǎn);
④x∈(-
π
2
,
π
2
)時,函數(shù)y=tanx與y=x的圖象有一個交點(diǎn).
A、①③B、①④C、②③D、②④

查看答案和解析>>

同步練習(xí)冊答案