4.已知兩直線l1:ax-2y+1=0,l2:x-ay-2=0.當(dāng)a=0時(shí),l1⊥l2

分析 由垂直關(guān)系可得a的方程,解方程可得.

解答 解:∵兩直線l1:ax-2y+1=0,l2:x-ay-2=0相互垂直,
∴a×1-(-2)(-a)=0,
解得a=0
故答案為:0

點(diǎn)評(píng) 本題考查直線的一般式方程和垂直關(guān)系,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在正六棱柱的各個(gè)面所在的平面中,有4對(duì)互相平行,與一個(gè)側(cè)面所在平面相交的有4個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知sinα=$\frac{5}{13}$,cosβ=$-\frac{3}{5}$,其中α為第一象限角,β為第三象限角,求sin($\frac{π}{4}+α$)和cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在側(cè)棱長(zhǎng)為a的正三棱錐S-ABC中,∠BSA=$\frac{π}{2}$,P為△ABC內(nèi)一動(dòng)點(diǎn),且P到三個(gè)側(cè)面SAB,SBC,SCA的距離為d1,d2,d3.若d1+d2=d3,則點(diǎn)P形成曲線的長(zhǎng)度為$\frac{\sqrt{2}}{2}$a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)$f(x)=\left\{\begin{array}{l}(1-3a)x+2,x≤1\\{a^x},x>1\end{array}\right.$是R上的減函數(shù),則實(shí)數(shù)a的取值范圍為( 。
A.$(\frac{1}{3},1)$B.$[\frac{3}{4},1)$C.$(\frac{1}{3},\frac{3}{4})$D.$(\frac{1}{3},\frac{3}{4}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)y=f(x)是定義在R上的偶函數(shù),在(-∞,0]上單調(diào)遞減,且有f(2)=0,則使得(x-1)•f(log3x)<0的x的范圍為( 。
A.(1,2)B.$(0,\frac{1}{9})∪(9,+∞)$C.$(0,\frac{1}{9})∪(1,9)$D.$(\frac{1}{9},9)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)偶函數(shù)f(x)滿(mǎn)足:f(1)=2,且當(dāng)時(shí)xy≠0時(shí),$f(\sqrt{{x^2}+{y^2}})=\frac{f(x)f(y)}{f(x)+f(y)}$,則f(-5)=$\frac{2}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知偶函數(shù)f(x)是[0,+∞)上單調(diào)遞減,滿(mǎn)足不等式f(2a-1)<f(1),則實(shí)數(shù)a的取值范圍是(-∞,0)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.根據(jù)如圖所示的偽代碼,最后輸出的實(shí)數(shù)a的值為105.

查看答案和解析>>

同步練習(xí)冊(cè)答案