(1)求矩陣A=
23
12
的逆矩陣;
(2)利用逆矩陣知識解方程組
2x+3y-1=0
x+2y-3=0
分析:(1)先計算矩陣行列式的值
.
23
12
.
=1
,然后利用公式可得A-1=
2
1
-3
1
-1
1
2
1
,從而得解;
(2)方程組即為
23
12
x
y
=
1
3
,兩邊同乘以系數(shù)矩陣的逆矩陣,化簡即可求出方程組的解.
解答:解:(1)先計算矩陣行列式的值
.
23
12
.
=1

A-1=
2
1
-3
1
-1
1
2
1
=
2-3
-12

A-1=
2-3
-12
;
(2)方程組即為
23
12
x 
y 
=
1 
3 

x
y
=A-1•B=
2-3
-12
1
3
=
-7
5

x=-7
y=5
點評:本題以矩陣為載體,考查逆矩陣,考查利用逆矩陣解方程組,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,CP是圓O的切線,P為切點,直線CO交圓O于A,B兩點,AD⊥CP,垂足為D.
求證:∠DAP=∠BAP.
B.選修4-2:矩陣與變換
設(shè)a>0,b>0,若矩陣A=
.
a0
0b
.
把圓C:x2+y2=1變換為橢圓E:
x2
4
+
y2
3
=1.
(1)求a,b的值;(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標(biāo)系與參數(shù)方程在極坐標(biāo)系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-\frac{π}{6})=a截得的弦長為2
3
求實數(shù)a的值.
D.選修4-5:不等式選講已知a,b是正數(shù),求證:a2+4b2+
1
ab
≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)在A,B,C,D四小題中只能選做2題,每小題10分,共計20分.請在答題卡指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點,BM的延長線交⊙O于N,過
N點的切線交CA的延長線于P.
(1)求證:PM2=PA•PC;
(2)若⊙O的半徑為2
3
,OA=
3
OM,求MN的長.
B.選修4-2:矩陣與變換
曲線x2+4xy+2y2=1在二階矩陣M=
.
1a
b1
.
的作用下變換為曲線x2-2y2=1,求實數(shù)a,b的值;
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=
2
cos(θ+
π
4
)
,以極點為原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=1+
4
5
y=-1-
3
5
(t為參數(shù)),求直線l被圓C所截得的弦長.
D.選修4-5:不等式選講
設(shè)a,b,c均為正實數(shù).
(1)若a+b+c=1,求a2+b2+c2的最小值;
(2)求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

B.選修4-2:矩陣與變換
設(shè)a>0,b>0,若矩陣A=
.
a0
0b
.
把圓C:x2+y2=1變換為橢圓E:
x2
4
+
y2
3
=1.
(1)求a,b的值;
(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標(biāo)系與參數(shù)方程在極坐標(biāo)系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-
π
6
)=a截得的弦長為2
3
,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•南京模擬)A.選修4-1幾何證明選講
如圖,△ABC的外接圓的切線AE與BC的延長線相交于點E,∠BAC的平分線與BC交于點D.
求證:ED2=EB•EC.
B.矩陣與變換
已知矩陣A=
2-1
-43
,
4-1
-31
,求滿足AX=B的二階矩陣X.
C.選修4-4 參數(shù)方程與極坐標(biāo)
若兩條曲線的極坐標(biāo)方程分別為ρ=1與ρ=2cos(θ+
π
3
),它們相交于A,B兩點,求線段AB的長.
D.選修4-5 不等式證明選講設(shè)a,b,c為正實數(shù),求證:a3+b3+c3+
1
abc
≥2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

B.選修4-2:矩陣與變換
設(shè)a>0,b>0,若矩陣A=
.
a0
0b
.
把圓C:x2+y2=1變換為橢圓E:
x2
4
+
y2
3
=1.
(1)求a,b的值;
(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標(biāo)系與參數(shù)方程在極坐標(biāo)系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-
π
6
)=a截得的弦長為2
3
,求實數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案