設(shè)(2x+1)5+(x-2)4=a0+a1x+a2x2+a3x3+a4x4+a5x5,則a2=
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:由題意可得,a2就是x2的系數(shù),再根據(jù)二項(xiàng)式的展開式的通項(xiàng)公式可得x2的系數(shù)為
C
3
5
•22
+
C
2
4
•22
,計(jì)算求得結(jié)果.
解答: 解:由題意可得,a2就是x2的系數(shù),
再根據(jù)二項(xiàng)式的展開式的通項(xiàng)公式可得x2的系數(shù)為
C
3
5
•22
+
C
2
4
•22
=40+24=64,
故答案為:64.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),二項(xiàng)式系數(shù)的性質(zhì),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

甲乙二人比賽投籃,每人連續(xù)投3次,投中次數(shù)多者獲勝.若甲前2次每次投中的概率都是
1
3
,第3次投中的概率
1
2
;乙每次投中的概率都是
2
5
,甲乙每次投中與否相互獨(dú)立.
(Ⅰ)求乙直到第3次才投中的概率;
(Ⅱ)在比賽前,從勝負(fù)的角度考慮,你支持誰?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB是圓O的弦,CD是AB的垂直平分線,切線AE與DC的延長(zhǎng)線相交于E.若AB=24,AE=20,則圓O的半徑R=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(x,8),
b
=(4,y),
c
=(x,y)(x>0,y>0),若
a
b
,則|
c
|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若一個(gè)命題的逆命題、否命題、逆否命題中有且只有一個(gè)是真命題,我們就把這個(gè)命題叫做“正向真命題”,給出下列命題:
①函數(shù)y=x2(x∈R)為偶函數(shù);   
②若
a
c
=
b
c
,則
a
=
b

③若四點(diǎn)不共面,則這四點(diǎn)中任何三點(diǎn)都不共線;
其中是“正向真命題”的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i為虛數(shù)單位,計(jì)算(1+2i)(1-i)2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x
x+1
的值域?yàn)?div id="plfeask" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入n的值為7,則輸出s的值是(  )
A、10B、16C、22D、17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“m=1”是“復(fù)數(shù)z=(1+mi)(1+i)(m∈R,i為虛數(shù)單位)為純虛數(shù)”的( 。
A、充分非必要條件
B、必要非充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案