已知函數(shù)f(x)=的圖象為曲線C,函數(shù)g(x)=ax+b的圖象為直線l.
(1)當(dāng)a=2,b=-3時(shí),求F(x)=f(x)-g(x)的最大值;
(2)設(shè)直線l與曲線C的交點(diǎn)的橫坐標(biāo)分別為x1,x2,且x1≠x2,求證:(x1+x2)g(x1+x2)>2.
【答案】分析:(1)由a=2,b=-3,知,x∈(0,1),F(xiàn)'(x)>0,F(xiàn)'(x)單調(diào)遞增,x∈(1,+∞),F(xiàn)'(x)<0,F(xiàn)'(x)單調(diào)遞減,由此能求出F(x)=f(x)-g(x)的最大值.
(2)設(shè)x1<x2,要證(x1+x2)g(x1+x2)>2,只需證,由此入手,能夠證明(x1+x2)g(x1+x2)>2.
解答:解:(1)∵,
,
x∈(0,1),F(xiàn)'(x)>0,F(xiàn)'(x)單調(diào)遞增,
x∈(1,+∞),F(xiàn)'(x)<0,F(xiàn)'(x)單調(diào)遞減,
∴F(x)max=F(1)=2
(2)不妨設(shè)x1<x2,要證(x1+x2)g(x1+x2)>2,只需證,
,
,
,即 ,∴,
,x∈(x1,+∞).只需證
,令 ,則 ,G(x)在x∈(x1,+∞)單調(diào)遞增.
G(x)>G(x1)=0,∴H′(x)>0,∴H(x)在x∈(x1,+∞)單調(diào)遞增.H(x)>H(x1)=0,
H(x)=(x+x1)ln-2(x-x1)>0,∴(x1+x2)g(x1+x2)>2.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用,考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.對(duì)數(shù)學(xué)思維的要求比較高,有一定的探索性.綜合性強(qiáng),難度大,是高考的重點(diǎn).解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4、已知函數(shù)f(x)=2x的反函數(shù)為f-1(x),則f-1(x)<0的解集是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3的切線的斜率等于1,則這樣的切線有(  )
A、1條B、2條C、3條D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|sinx|的圖象與直線y=kx(k>0)有且僅有三個(gè)交點(diǎn),交點(diǎn)的橫坐標(biāo)的最大值為α,求證:
cosα
sinα+sin3α
=
1+α2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x2的圖象在P(a,-a2)(a≠0)處的切線與兩坐標(biāo)軸所圍成的三角形的面積為2,則實(shí)數(shù)a的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x的圖象與函數(shù)g(x)的圖象關(guān)于直線y=x對(duì)稱,令h(x)=g(1-|x|)則關(guān)于函數(shù)h(x)有下列命題:
①h(x)為圖象關(guān)于y軸對(duì)稱;
②h(x)是奇函數(shù);
③h(x)的最小值為0;
④h(x)在(0,1)上為減函數(shù).
其中正確命題的序號(hào)為
①④
①④
(注:將所有正確命題的序號(hào)都填上).

查看答案和解析>>

同步練習(xí)冊(cè)答案