已知sinα=
3
5
,α∈(
π
2
,π),tan(π-β)=
1
2
,則tan(α-2β)=
 
分析:由sinα的值和α的范圍,利用同角三角函數(shù)間的基本關(guān)系求出cosα的值及tanα的值,利用誘導(dǎo)公式化簡(jiǎn)tan(π-β)=
1
2
得到tanβ的值,然后利用二倍角的正切函數(shù)公式求出tan2β的值,把所求的式子利用兩角差的正切函數(shù)公式化簡(jiǎn)后,將tanα和tan2β的值代入即可求出值.
解答:解:由sinα=
3
5
,且α∈(
π
2
,π),得到cosα=-
1-sin2α
=-
4
5
,所以tanα=-
3
4
;
由tan(π-β)=-tanβ=
1
2
,得到tanβ=-
1
2
,所以tan2β=
2tanβ
1-tan2β
=-
4
3

則tan(α-2β)=
tanα-tan2β
1+tanαtan2β
=
-
3
4
+
4
3
1+
3
4
×
4
3
=
7
24

故答案為:
7
24
點(diǎn)評(píng):此題考查學(xué)生靈活運(yùn)用誘導(dǎo)公式、兩角差的正切函數(shù)公式及同角三角函數(shù)間的基本關(guān)系化簡(jiǎn)求值,是一道中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sinθ=
3
5
,θ∈(
π
2
,π)
,求tanθ,cos(θ+
π
4
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=
3
5
,則cos2α的值為( 。
A、-
24
25
B、-
7
25
C、
7
25
D、
24
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=
3
5
,且α∈(
π
2
,π)
,那么sin2α等于(  )
A、
12
25
B、-
12
25
C、
24
25
D、-
24
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=
3
5
,α∈(0,
π
2
)

(1)求cosα的值;
(2)求sin2α+cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•廣州一模)已知sinθ=
3
5
θ∈(0,
π
2
)
,求tanθ和cos2θ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案