4.己知實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x-y+2≥0}\\{2x+y-3≤0}\\{0≤y≤a}\end{array}\right.$,若z=x-2y的最小值為-3,則a的值為(  )
A.1B.$\frac{3}{2}$C.2D.$\frac{7}{3}$

分析 畫出約束條件的可行域,利用目標(biāo)函數(shù)的最值列出方程,求解即可.

解答 解:實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x-y+2≥0}\\{2x+y-3≤0}\\{0≤y≤a}\end{array}\right.$的可行域如圖,
當(dāng)直線z=x-2y過(guò)點(diǎn)A(a-2,a)時(shí),z取得最小值,即a-2-2a=-3可得 a=1.

故選:A.

點(diǎn)評(píng) 本題考查線性規(guī)劃的簡(jiǎn)單應(yīng)用,考查數(shù)形結(jié)合以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=|x+3|+|x-1|的最小值為m.
(Ⅰ)求m的值以及此時(shí)的x的取值范圍;
(Ⅱ)若實(shí)數(shù)p,q,r滿足p2+2q2+r2=m,證明:q(p+r)≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若2f(x)+f(-x)=x3+x+3對(duì)x∈R恒成立,則曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為13x-y-15=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若復(fù)數(shù)z=$\frac{3-i}{|2-i|}$,則|z|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)f(x)=$\sqrt{x+1}$+lg(6-3x)的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,2)B.(2,+∞)C.[-1,2)D.[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知a,b∈(0,1)記M=a•b,N=a+b-1則M與N的大小關(guān)系是(  )
A.M<NB.M=NC.M>ND.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)$f(x)=\frac{a^x}{{{a^x}+1}}+btanx+{x^2}$(a>0,a≠1),若f(1)=3,則f(-1)等于( 。
A.-3B.-1C.0D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.100B.82C.96D.112

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)f(x)=sin(2x+φ),其中φ為實(shí)數(shù),若f(x)≤|f($\frac{π}{6}$)|對(duì)(0,+∞)恒成立,且$f(\frac{π}{2})>f(π)$,則f(x)的單調(diào)遞增區(qū)間是[$\frac{π}{6}$+kπ,$\frac{2π}{3}$+kπ],k∈Z.

查看答案和解析>>

同步練習(xí)冊(cè)答案