已知函數(shù)f(x)的導(dǎo)函數(shù)f'(x)的圖象如圖所示,給出以下結(jié)論:
①函數(shù)f(x)在(-2,-1)和(1,2)是單調(diào)遞增函數(shù);
②函數(shù)f(x)在(-2,0)上是單調(diào)遞增函數(shù),在(0,2)上是單調(diào)遞減函數(shù);
③函數(shù)f(x)在x=-1處取得極大值,在x=1處取得極小值;
④函數(shù)f(x)在x=0處取得極大值f(0).
則正確命題的序號是
②④
②④
.(填上所有正確命題的序號)
分析:圖象可以看出在(-2,0),f′(x)>0,在(0,2)上f′(x)<0,所以函數(shù)f(x)在(-2,0)內(nèi)單調(diào)遞增,在(0,2)內(nèi)單調(diào)遞減,函數(shù)在x=0處取得極大值f(0).故可得結(jié)論
解答:解:圖象可以看出在(-2,0),f′(x)>0,在(0,2)上f′(x)<0,所以函數(shù)f(x)在(-2,0)內(nèi)單調(diào)遞增,在(0,2)內(nèi)單調(diào)遞減,故①錯(cuò),②正確,③錯(cuò);
∵函數(shù)f(x)在(-2,0)內(nèi)單調(diào)遞增,在(0,2)內(nèi)單調(diào)遞減
∴函數(shù)在x=0處取得極大值f(0).所以④正確.
故答案為:②④
點(diǎn)評:本題考查導(dǎo)數(shù)的運(yùn)用以及看圖能力.注意導(dǎo)函數(shù)的圖象,與原函數(shù)圖象的區(qū)別與聯(lián)系是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4、已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=a(x+1)(x-a),若f(x)在x=a處取到極大值,則a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

14、已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=2x-5,且f(0)的值為整數(shù),當(dāng)x∈(n,n+1](n∈N*)時(shí),f(x)的值為整數(shù)的個(gè)數(shù)有且只有1個(gè),則n=
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

18、已知函數(shù)f(x)的導(dǎo)數(shù)f″(x)滿足0<f′(x)<1,常數(shù)a為方程f(x)=x的實(shí)數(shù)根.
(Ⅰ)若函數(shù)f(x)的定義域?yàn)镸,對任意[a,b]⊆M,存在x0∈[a,b],使等式f(b)-f(a)=(b-a)f″(x0)成立,求證:方程f(x)=x存在唯一的實(shí)數(shù)根a;
(Ⅱ) 求證:當(dāng)x>a時(shí),總有f(x)<x成立;
(Ⅲ)對任意x1、x2,若滿足|x1-a|<2,|x2-a|<2,求證:|f(x1)-f(x2)|<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),且滿足f(x)=2xf'(1)+lnx,則f(1)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的圖象如圖所示,那么( 。

查看答案和解析>>

同步練習(xí)冊答案