精英家教網 > 高中數學 > 題目詳情
已知數列{an}中,首項a1=1,Sn是其前n項的和,并且滿足Sn=n2an(n∈N*).
(1)試求a2,a3,a4,a5;
(2)試歸納數列{an}的通項公式,并用數學歸納法證明.
(1)∵Sn=n2an,∴an+1=Sn+1-Sn=(n+1)2an+1-n2an
an+1=
n
n+2
an

a2=
1
3
,a3=
1
6
a4=
1
10
,a5=
1
15

(2)猜測 an=
2
n(n+1)
;下面用數學歸納法證
①當n=1時,結論顯然成立.
②假設當n=k時結論成立,即ak=
2
k(k+1)

則當n=k+1時,ak+1=
k
k+2
ak=
k
k+2
×
2
k(k+1)
=
2
(k+1)(k+2)

故當n=k+1時結論也成立.
由①、②可知,對于任意的n∈N*,都有an=
2
n(n+1)
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知數列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,則
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}中,a1=1,an+1=
an
1+2an
,則{an}的通項公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求數列{an}的通項公式;
(2)求數列{
2n
an
}
的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}中,a1=
1
2
Sn
為數列的前n項和,且Sn
1
an
的一個等比中項為n(n∈N*
),則
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}中,a1=1,2nan+1=(n+1)an,則數列{an}的通項公式為( 。
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步練習冊答案