精英家教網 > 高中數學 > 題目詳情
已知定義在實數集上的函數f(x)滿足f(x+1)=
x
2
+2,則f-1(x+1)的表達式是( 。
分析:由已知中函數f(x)滿足f(x+1)=
x
2
+2,我們可以用換元法求出函數f(x)的解析式,進而求出f-1(x)的解析式,將x+1代入后可得f-1(x+1)的表達式.
解答:解:令t=x+1,則x=t-1
又∵f(x+1)=
x
2
+2
∴f(t)=
t-1
2
+2=
t+3
2

即y=f(x)=
x+3
2

即2y=x+3
即x=2y-3
∴f-1(x)=2x-3
∴f-1(x+1)=2(x+1)-3=2x-1
故選B
點評:本題考查的知識點是函數的解析式的求解及常用方法,反函數,其中由f(x+1)求f(x),常用換元法,由f(x)求f(x+1),常用代入法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

18、已知定義在實數集上的函數y=f(x)滿足條件:對于任意的實數x,y,f(x+y)=f(x)+f(y),且x>0時,f(x)>0,f(1)=2,
(1)求f(0);f(2);
(2)證明:f(x)是奇函數;
(3)證明:f(x)是增函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在實數集上的函數y=f(x)滿足條件:對任意的x,y∈R,f(x+y)=f(x)+f(y).
(1)求f(0)的值,
(2)求證:f(x)是奇函數,
(3)舉出一個符合條件的函數y=f(x).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在實數集上的函數fn(x)=xn,(x∈N*),其導函數記為fn′(x),且滿足fn′[ax1+(1-a)x2]  =
f2(x2)-f2(x1x2-x1
,其中a,x1,x2為常數,x1≠x2.設函數g(x)=f1(x)+mf2(x)-lnf3(x),(m∈R且m≠0).
(Ⅰ)求實數a的值;
(Ⅱ)若函數g(x)無極值點,其導函數g′(x)有零點,求m的值;
(Ⅲ)求函數g(x)在x∈[0,a]的圖象上任一點處的切線斜率k的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在實數集上的函數f(x)滿足xf(x)為偶函數,f(x+2)=-f(x),(x∈R) 且當1≤x≤3時,f(x)=(2-x)3
(1)求-1≤x≤0時,函數f(x)的解析式.
(2)求f(2008)、f(2008.5)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在實數集上的偶函數y=f(x)在區(qū)間(0,+∞)上是增函數,那么y1=f(
π
3
)
,y2=f(3x2+1)y3=f(log2
1
4
)
之間的大小關系為(  )

查看答案和解析>>

同步練習冊答案