設(shè)函數(shù)f(x)=asin2x+bcos2x,其中a,b∈R.a(chǎn)b≠0,若f(x)≤|f()|對(duì)一切x∈R恒成立,則
①f()=0;  ②|f()|<|f()|;
③函數(shù)y=f(x)既不是奇函數(shù)也不是偶函數(shù);
④函數(shù)y=f(x)的單調(diào)遞增區(qū)間是:[kπ+,kπ+](k∈Z);
⑤經(jīng)過點(diǎn)(a,b)的所有直線均與函數(shù)y=f(x)的圖象相交.
以上結(jié)論正確的是    (寫出所有正確結(jié)論的編號(hào)).
【答案】分析:由輔助角公式,化簡(jiǎn)得f(x)=sin(2x+θ),結(jié)合已知不等式得f()是函數(shù)的最大或最小值,從而得到
f(x)=sin(2x++kπ)=±sin(2x+).再根據(jù)三角函數(shù)y=Asin(ωx+φ)的圖象與性質(zhì),對(duì)各選項(xiàng)逐個(gè)加以判斷,可得①③⑤通過證明可得其正確性,而②④存在反例說明它們不正確.
解答:解:f(x)=asin2x+bcos2x=sin(2x+θ),其中角θ滿足cosθ=,sinθ=
∵f(x)≤|f()|對(duì)一切x∈R恒成立,
∴f()=或-,得2×+θ=+kπ,k∈Z
因此θ=+kπ,k∈Z.f(x)=sin(2x++kπ)=sin(2x+)或-sin(2x+
對(duì)于①,因?yàn)閟in(2×+)=sin2π=0,所以f()=±sin(2×+)=0,故①正確;
對(duì)于②,|f()|=|sin(2×+)|=
∵|f()|=|sin(2×+)|=sin
∴|f()|>|f()|,故②不正確;
對(duì)于③,根據(jù)函數(shù)的表達(dá)式,得f(-x)≠±f(x),故y=f(x)既不是奇函數(shù)也不是偶函數(shù),故③正確;
對(duì)于④,因?yàn)楹瘮?shù)的表達(dá)式f(x)=sin(2x+)或-sin(2x+),
表達(dá)式不確定,故[kπ+,kπ+](k∈Z)不一定是增區(qū)間,故④不正確;
對(duì)于⑤,采用反證法
設(shè)經(jīng)過點(diǎn)(a,b)的一條直線與函數(shù)y=f(x)的圖象不相交,則此直線與x軸平行
方程為y=b,且|b|>,平方得b2>a2+b2矛盾,故假設(shè)不成立
∴經(jīng)過點(diǎn)(a,b)的所有直線均與函數(shù)y=f(x)的圖象相交.故⑤正確.
故答案為:①③⑤
點(diǎn)評(píng):本題給出符合已知條件的三角函數(shù)表達(dá)式,叫我們判斷幾個(gè)選項(xiàng)的正確性,著重考查了函數(shù)y=Asin(ωx+φ)的圖象與性質(zhì)、兩角和與差的三角函數(shù)和反證法等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镽,當(dāng)x<0時(shí)f(x)>1,且對(duì)任意的實(shí)數(shù)x,y∈R,有f(x+y)=f(x)f(y).?dāng)?shù)列{an}滿足f(an+1)=
1f(-2-an)
(n∈N*
(Ⅰ)求f(0)的值,判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得點(diǎn)(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數(shù)M,當(dāng)n>M時(shí),a n>f(0)恒成立?若存在,求出M的最小值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)镽,當(dāng)x<0時(shí)f(x)>1,且對(duì)任意的實(shí)數(shù)x,y∈R,有f(x+y)=f(x)f(y).?dāng)?shù)列{an}滿足f(an+1)=
1
f(-2-an)
(n∈N*)

(Ⅰ)求f(0)的值,判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得點(diǎn)(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數(shù)M,當(dāng)n>M時(shí),an>0恒成立?若存在,求出M的最小值,若不存在,請(qǐng)說明理由;
(Ⅲ)若a1=f(0),不等式
1
an+1
+
1
an+2
+…+
1
a2n
12
35
(1+logf(1)x)
對(duì)不小于2的正整數(shù)恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
3x-1
x+1

(1)已知s=-t+
1
2
(t>1),求證:f(
t-1
t
)=
s+1
s
;
(2)證明:存在函數(shù)t=φ(s)=as+b(s>0),滿足f(
s+1
s
)=
t-1
t
;
(3)設(shè)x1=
11
17
,xn+1=f(xn),n=1,2,….問:數(shù)列{
1
xn-1
}是否為等差數(shù)列?若是,求出數(shù)列{xn}中最大項(xiàng)的值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省惠州一中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)函數(shù)f(x)的定義域?yàn)镽,當(dāng)x<0時(shí)f(x)>1,且對(duì)任意的實(shí)數(shù)x,y∈R,有f(x+y)=f(x)f(y).?dāng)?shù)列{an}滿足f(an+1)=(n∈N*
(Ⅰ)求f(0)的值,判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得點(diǎn)(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數(shù)M,當(dāng)n>M時(shí),a n>f(0)恒成立?若存在,求出M的最小值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省惠州一中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù)f(x)的定義域?yàn)镽,當(dāng)x<0時(shí)f(x)>1,且對(duì)任意的實(shí)數(shù)x,y∈R,有f(x+y)=f(x)f(y).?dāng)?shù)列{an}滿足
(Ⅰ)求f(0)的值,判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅱ)如果存在t、s∈N*,s≠t,使得點(diǎn)(t,as)、(s,at)都在直線y=kx-1上,試判斷是否存在自然數(shù)M,當(dāng)n>M時(shí),an>0恒成立?若存在,求出M的最小值,若不存在,請(qǐng)說明理由;
(Ⅲ)若a1=f(0),不等式對(duì)不小于2的正整數(shù)恒成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案