若函數(shù)f(x)=
lnx
x
,則f′(2)=
 
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:先根據(jù)導(dǎo)數(shù)的運(yùn)算法則,再代入值即可
解答: 解:∵f(x)=
lnx
x
,
∴f′(x)=
(lnx)′x-lnx•x′
x2
=
1-lnx
x2

f′(2)=
1-ln2
4

故答案為:
1-ln2
4
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的運(yùn)算法則,屬于基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lg(mx-2x)(0<m<1).
(1)當(dāng)m=
1
2
時(shí),求f(x)的定義域;
(2)試判斷函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性并給出證明;
(3)若f(x)在(-∞,-1]上恒取正值,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某中學(xué)準(zhǔn)備從高一、高二共2014名學(xué)生中選派50名學(xué)生參加冬令營(yíng)活動(dòng),若采用下面的方法選。合扔煤(jiǎn)單隨機(jī)抽樣的方法從2014人中剔除14人,剩下的2000人再按系統(tǒng)抽樣的方法抽取50人,則在這2014名學(xué)生中,每個(gè)人入選的概率( 。
A、都相等,且為
1
40
B、都相等,且為
25
1007
C、均不相等
D、不全相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i是虛數(shù)單位,則復(fù)數(shù)
(1+i)2
1-2i
等于( 。
A、-
4
5
+
2
5
i
B、-
2
5
+
3
5
i
C、
4
5
-
2
5
i
D、
2
5
-
3
5
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的導(dǎo)數(shù)
①y=(2x-1)2(3x+2ex
②y=
x2
2x+1
   
③y=2xlnx
④y=5xcosx    
⑤y=tanx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)的定義域?yàn)閇-1,5],部分對(duì)應(yīng)值如表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,下列關(guān)于f(x)的命題:
 x-1 04 5
 f(x) 12 21
①函數(shù)f(x)的最大值點(diǎn)為0,4;
②函數(shù)f(x)在區(qū)間[0,2]上是減函數(shù);
③如果當(dāng)x∈[-1,t]時(shí),f(x)的最大值是2,那么t的最大值為4.
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)
1+cosα
1-cosα
+
1-cosα
1+cosα
(α為第四象限角)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-2x<0},B={x|
x+1
x-1
>0},則A∩(∁RB)=( 。
A、{x|0<x<1}
B、{x|1≤x<2}
C、{x|0<x≤1}
D、{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C:
y2
16
-
x2
4
=1,點(diǎn)P與雙曲線C的焦點(diǎn)不重合,若點(diǎn)P關(guān)于雙曲線C的上、下焦點(diǎn)的對(duì)稱點(diǎn)分別為A、B,點(diǎn)Q在雙曲線C的上支上,點(diǎn)P關(guān)于點(diǎn)Q的對(duì)稱點(diǎn)P1,則|P1A|-|P1B|=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案