函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
的部分圖象如圖所示,則ω,φ的值分別為
2,
π
6
2,
π
6
分析:由題意結(jié)合函數(shù)的圖象,求出周期T,根據(jù)周期公式求出ω,求出A,根據(jù)函數(shù)的圖象經(jīng)過(
π
6
,1),求出φ,即可.
解答:解:由函數(shù)的圖象可知:
3
4
T=
11π
12
-
π
6
=
3
4
π
,T=π,所以ω=2,A=1,
函數(shù)的圖象經(jīng)過(
π
6
,1),所以1=sin(2×+φ),因?yàn)閨φ|<
π
2
,所以φ=
π
6

故答案為:2;
π
6
點(diǎn)評:本題是基礎(chǔ)題,考查三角函數(shù)的圖象與性質(zhì),函數(shù)解析式的求法,考查計算能力,發(fā)現(xiàn)問題解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π2
)
的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)若圖象g(x)與函數(shù)f(x)的圖象關(guān)于點(diǎn)P(4,0)對稱,求函數(shù)g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•大連一模)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)
的圖象(部分)如圖所示,則ω,φ分別為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x∈[-
π
6
,
3
]
時,函數(shù)f(x)=Asin(ωx+θ) (A>0,ω>0,|θ|<
π
2
)
的圖象如圖所示.
(1)求函數(shù)f(x)在[-
π
6
,
3
]
上的表達(dá)式;
(2)求方程f(x)=
2
2
[-
π
6
3
]
的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)函數(shù)f(x)=Asin(ωx+φ),x∈R(A>0,ω>0,|φ|<
π
2
)
的一段圖象如圖5所示:將y=f(x)的圖象向右平移m(m>0)個單位,可得到函數(shù)y=g(x)的圖象,且圖象關(guān)于原點(diǎn)對稱,g(
π
2013
)>0

(1)求A、ω、φ的值;
(2)求m的最小值,并寫出g(x)的表達(dá)式;
(3)若關(guān)于x的函數(shù)y=g(
tx
2
)
在區(qū)間[-
π
3
,
π
4
]
上最小值為-2,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,x∈R,|φ|<
π
2
)
的圖象(部分)如圖所示,則f(x)的解析式是(  )
A、f(x)=5sin(
π
3
x+
π
6
)
B、f(x)=5sin(
π
6
x-
π
6
)
C、f(x)=5sin(
π
6
x+
π
6
)
D、f(x)=5sin(
π
3
x-
π
6
)

查看答案和解析>>

同步練習(xí)冊答案