分析 由題意得到f′(x)cosx>f(x)sinx,構(gòu)造函數(shù)g(x)=f(x)cosx,判斷函數(shù)g(x)在(-$\frac{π}{2}$,$\frac{π}{2}$)上單調(diào)遞增,逐一驗證即可.
解答 解:∵f′(x)>tanx•f(x),
∵x∈(-$\frac{π}{2}$,$\frac{π}{2}$),
∴0<cosx≤1
∴f′(x)cosx>f(x)sinx,
構(gòu)造函數(shù)g(x)=f(x)cosx,
∴g′(x)=f′(x)cosx-f(x)sinx>0在x∈(-$\frac{π}{2}$,$\frac{π}{2}$)恒成立,
∴函數(shù)g(x)在(-$\frac{π}{2}$,$\frac{π}{2}$)上單調(diào)遞增,
∵0<$\frac{π}{3}$,
∴g(0)<g($\frac{π}{3}$),
∴f(0)cos0<f($\frac{π}{3}$)cos$\frac{π}{3}$,
∴2f(0)<f($\frac{π}{3}$);故①錯誤,
∵-$\frac{π}{3}$<-$\frac{π}{4}$,
∴f(-$\frac{π}{3}$)cos(-$\frac{π}{3}$)<f(-$\frac{π}{4}$)cos(-$\frac{π}{4}$),
∴f(-$\frac{π}{3}$)<$\sqrt{2}$f(-$\frac{π}{4}$),故②錯誤,
∵$\frac{π}{6}$<$\frac{π}{4}$,
∴f($\frac{π}{6}$)cos($\frac{π}{6}$)<f($\frac{π}{4}$)cos($\frac{π}{4}$),
∴$\frac{\sqrt{3}}{2}$f($\frac{π}{6}$)<$\frac{\sqrt{2}}{2}$f($\frac{π}{4}$),
∴$\frac{\sqrt{2}}{2}$f($\frac{π}{6}$)<$\frac{\sqrt{3}}{3}$f($\frac{π}{4}$),故③錯誤,
∵-1<$\frac{π}{3}$,
∴g(-1)<g($\frac{π}{3}$),
∴f(-1)cos(-1)<f($\frac{π}{3}$)cos$\frac{π}{3}$,
∴2f(-1)<$\frac{1}{cos1}$f($\frac{π}{3}$)故④正確,
故答案為:④
點評 本題考查了函數(shù)的單調(diào)性和導(dǎo)數(shù)的關(guān)系,關(guān)鍵是構(gòu)造函數(shù),屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8\sqrt{15}}{5}$ | B. | $\sqrt{15}$ | C. | $\frac{\sqrt{15}}{2}$ | D. | 6$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
酒精含量(單位:mg/100ml) | [20,30) | [30,40) | [40,50) | [50,60) |
人數(shù) | 16 | 16 | 4 | |
酒精含量(單位:mg/100ml) | [60,70) | [70,80) | [80,90) | [90,100] |
人數(shù) | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 345° | B. | -345° | C. | 235° | D. | -435° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2016 | B. | 2015 | C. | 2014 | D. | 2013 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [6,12] | B. | (6,12) | C. | [5,12] | D. | (5,12) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com