已知函數(shù)。
(1)若的解集為,求實(shí)數(shù)的值。
(2)當(dāng)時,解關(guān)于的不等式。

(Ⅰ). (Ⅱ)當(dāng)t=0時,原不等式的解集為R,當(dāng)t>0時,原不等式的解集為

解析試題分析:(Ⅰ)由|x﹣a|≤m得a﹣m≤x≤a+m,
所以解之得為所求.            4分
(Ⅱ)當(dāng)a=2時,f(x)=|x﹣2|,
所以f(x)+t≥f(x+2t)?|x﹣2+2t|﹣|x﹣2|≤t,①
當(dāng)t=0時,不等式①恒成立,即x∈R;
當(dāng)t>0時,不等式
解得x<2﹣2t或或x∈ϕ,即;
綜上,當(dāng)t=0時,原不等式的解集為R,
當(dāng)t>0時,原不等式的解集為.         10分
考點(diǎn):本題考查了絕對值不等式的解法及恒成立問題的解法
點(diǎn)評:不等式選講主要考查絕對值不等式的解法、不等式證明及其應(yīng)用,要求學(xué)生學(xué)會從分段函數(shù)角度來解絕對值不等式及絕對值不等式的最值問題等,掌握常見的證明不等式的方法如綜合法、分析法、數(shù)學(xué)歸納法等。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

若a,b,c為不全相等的正數(shù),求證:lg+lg+lg>lga+lgb+lgc.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若的解集為,求實(shí)數(shù)的值.
(2)當(dāng)時,解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)正有理數(shù)的一個近似值,令.
(Ⅰ)若,求證:
(Ⅱ)比較哪一個更接近,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)a,b,c均為正數(shù),且a+b+c=1,證明:
(Ⅰ)ab+bc+ac;
(Ⅱ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9f/f/1mzdc2.png" style="vertical-align:middle;" />,且對于任意,存在正實(shí)數(shù)L,使得均成立。
(1)若,求正實(shí)數(shù)L的取值范圍;
(2)當(dāng)時,正項(xiàng)數(shù)列{}滿足
①求證:;
②如果令,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4-5:不等式選講
設(shè)關(guān)于的不等式.
(I) 當(dāng),解上述不等式。
(II)若上述關(guān)于的不等式有解,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題10分)選修4—5:不等式選講
已知對于任意的非零實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(10分)已知,求證:。

查看答案和解析>>

同步練習(xí)冊答案