m 、n ∈N*f(x)(1x)m(1x)n的展開式中x的系數(shù)為19,求x2的系數(shù)的最小值及此時(shí)展開式中x7的系數(shù)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n∈N,f(x)=(1+2x)m+(1+x)n
(Ⅰ)當(dāng)m=n=2011時(shí),記f(x)=a0+a1x+a2x2+…+a2011x2011,求a0-a1+a2-…-a2011
(Ⅱ)若f(x)展開式中x的系數(shù)是20,則當(dāng)m、n變化時(shí),試求x2系數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x),g(x)在(m,n)上的導(dǎo)數(shù)分別為f'(x),g′(x),且f′(x)<g′(x),則當(dāng)m<x<n時(shí),有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
x3
3
…+
x2m-1
2m-1
,g(x)=
x2
2
+
x4
4
…+
x2n
2n
,定義域?yàn)镽,m,n∈N,h1(x)=c+f(x)-g(x),h2(x)=c-f(x)+g(x)
(1)若n=1,m=2,求h1(x)的單調(diào)區(qū)間;若n=2,m=2,求h2(x)的最小值.
(2)(文科選做)若m=n,c=0時(shí),令T(n)=h2(1),求T(n)的最大值.
    (理科選做)若m=n,c=0時(shí),令T(n)=h1(1),求證:T(n)=
1
n+1
+
1
n+2
+…+
1
2n

(3)若m=n+1,c=1時(shí),F(xiàn)(x)=h1(x+3)h2(x-2)且函數(shù)F(x)的零點(diǎn)均在區(qū)間[a,b](a<b,a,b∈Z)內(nèi),求b-a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P是M,N的中點(diǎn).
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
(n∈N*,n≥2),求
lim
n→∞
4Sn-9Sn
4Sn+1+9Sn+1
的值;
(3)在(2)的條件下,若an=
1
6
,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對(duì)一切n∈N*都成立,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•順義區(qū)二模)對(duì)于定義域分別為M,N的函數(shù)y=f(x),y=g(x),規(guī)定:
函數(shù)h(x)=
f(x)•g(x),當(dāng)x∈M且x∈N
f(x),當(dāng)x∈M且x∉N
g(x),當(dāng)x∉M且x∈N

(1)若函數(shù)f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函數(shù)h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,設(shè)bn為曲線y=h(x)在點(diǎn)(an,h(an))處切線的斜率;而{an}是等差數(shù)列,公差為1(n∈N*),點(diǎn)P1為直線l:2x-y+2=0與x軸的交點(diǎn),點(diǎn)Pn的坐標(biāo)為(an,bn).求證:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5
;
(3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,2π],請(qǐng)問,是否存在一個(gè)定義域?yàn)镽的函數(shù)y=f(x)及一個(gè)α的值,使得h(x)=cosx,若存在請(qǐng)寫出一個(gè)f(x)的解析式及一個(gè)α的值,若不存在請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案