分析 (1)根據(jù)向量的坐標運算和向量的模以及兩角和差即可求出答案,
(2)根據(jù)向量的數(shù)量積和二倍角公式化簡得到f(θ)=2cos2(θ-$\frac{π}{3}$)-2λcos(θ-$\frac{π}{6}$)-1,令t=cos(θ-$\frac{π}{6}$),根據(jù)二次函數(shù)的性質(zhì)即可求出.
解答 解:(1)∵向量$\overrightarrow{a}$=(cosθ,sinθ),$\overrightarrow$=(cosφ,sinφ),
∴$\overrightarrow{a}$-$\overrightarrow$=(cosθ-cosφ)+(sinθ-sinφ),
∴|$\overrightarrow{a}$-$\overrightarrow$|2=(cosθ-cosφ)2+(sinθ-sinφ)2=2-2cos(θ-φ)=2-2cos$\frac{π}{3}$=2-1=1,
∴|$\overrightarrow{a}$-$\overrightarrow$|=1;
(2)$\overrightarrow{a}$•$\overrightarrow$=cosθcosφ+sinθsinφ=cos(θ-φ)=cos(2θ-$\frac{π}{3}$),
∴|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{2+2cos(θ-φ)}$=2|cos(θ-$\frac{π}{6}$)|=2cos(θ-$\frac{π}{6}$),
∴f(θ)=$\overrightarrow{a}$•$\overrightarrow$-λ|$\overrightarrow{a}$+$\overrightarrow$|=cos(2θ-$\frac{π}{3}$)-2λcos(θ-$\frac{π}{6}$)=2cos2(θ-$\frac{π}{3}$)-2λcos(θ-$\frac{π}{6}$)-1
令t=cos(θ-$\frac{π}{6}$),則t∈[$\frac{1}{2}$,1],
∴f(t)=2t2-2λt-1=2(t-$\frac{λ}{2}$)2-$\frac{{λ}^{2}}{4}$-1,
又1≤λ≤2,$\frac{1}{2}$≤$\frac{λ}{2}$≤1
∴t=$\frac{λ}{2}$時,f(t)有最小值-$\frac{{λ}^{2}}{4}$-1,
∴f(θ)的最小值為-$\frac{{λ}^{2}}{4}$-1.
點評 本題考查了向量的坐標運算和向量的數(shù)量積以及三角函數(shù)的化簡,以及二次函數(shù)的性質(zhì),屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | 4 | C. | 0 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x=2kπ+$\frac{4π}{3}$,k∈Z} | B. | {x|x=2kπ+$\frac{π}{3}$,k∈Z} | C. | {$\frac{4π}{3}$,$\frac{π}{3}$} | D. | {x|x=kπ+$\frac{π}{3}$,k∈Z} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-2≤x<0} | B. | {x|-1<x<0} | C. | {-2,0} | D. | {x|1<x≤2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 2 | 5 | 8 | 9 | 11 |
y | 12 | 10 | 8 | 8 | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com