已知兩點M(-1,0)、N(1,0),點P為坐標平面內(nèi)的動點,滿足
(1)求動點P的軌跡方程;
(2)若點A(t,4)是動點P的軌跡上的一點,K(m,0)是x軸上的一動點,試討論直線AK與圓x2+(y-2)2=4的位置關(guān)系.
【答案】分析:(1)設(shè)P(x,y),由 ,得 ,由此化簡能求出點P的軌跡C的方程.
(2)由題意得,圓的圓心坐標為(0,2),半徑為2.當m=4時,直線AK的方程為x=4,此時,直線AK與圓M相離;當m≠4時,寫出直線AK的方程,圓心M(0,2)到直線AK的距離,由此可判斷直線AK與圓的位置關(guān)系.
解答:解:(1)設(shè)P(x,y),則,.(2分)
,
,(4分)
化簡得y2=4x.
所以動點P的軌跡方程為y2=4x.(5分)
(2)由點A(t,4)在軌跡y2=4x上,則42=4t,解得t=4,即A(4,4).(6分)
當m=4時,直線AK的方程為x=4,此時直線AK與圓x2+(y-2)2=4相離.(7分)
當m≠4時,直線AK的方程為,即4x+(m-4)y-4m=0,(8分)
圓心(0,2)到直線AK的距離,
,解得m<1;
,解得m=1;
,解得m>1.
綜上所述,當m<1時,直線AK與圓x2+(y-2)2=4相交;
當m=1時,直線AK與圓x2+(y-2)2=4相切;
當m>1時,直線AK與圓x2+(y-2)2=4相離.(14分)
點評:本題在向量與圓錐曲線交匯處命題,考查了向量的數(shù)量積、曲線方程的求法、直線與圓的位置關(guān)系以及分類討論思想和等價轉(zhuǎn)化能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知兩點M(-1,0),N(1,0),且點P使
MP
MN
,
PM
PN
,
NM
NP
成公差小于零的等差數(shù)列.
(1)點P的軌跡是什么曲線?
(2)若點P坐標為(x0,y0),記θ為
PM
PN
的夾角,求tanθ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩點M(-1,0),N(1,0)若直線3x-4y+m=0上存在點P滿足
PM
PN
=0
,則實數(shù)m的取值范圍是( 。
A、(-∞,-5]∪[5,+∞)
B、(-∞,-25]∪[25,+∞)
C、[-25,25]
D、[-5,5]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩點M(-1,0),N(1,0)且點P使
MP
MN
,
PM
PN
,
NM
NP
成等差數(shù)列.
(1)若P點的軌跡曲線為C,求曲線C的方程;
(2)從定點A(2,4)出發(fā)向曲線C引兩條切線,求兩切線方程和切點連線的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩點M(-1,0)、N(1,0),動點P(x,y)滿足|
MN
|•|
NP
|-
MN
MP
=0,
(1)求點P的軌跡C的方程;
(2)假設(shè)P1、P2是軌跡C上的兩個不同點,F(xiàn)(1,0),λ∈R,
FP1
FP2
,求證:
1
|FP1|
+
1
|FP2|
=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•廣州模擬)已知兩點M(-1,0)、N(1,0),點P為坐標平面內(nèi)的動點,滿足|
MN
|•|
NP
|=
MN
MP

(1)求動點P的軌跡方程;
(2)若點A(t,4)是動點P的軌跡上的一點,K(m,0)是x軸上的一動點,試討論直線AK與圓x2+(y-2)2=4的位置關(guān)系.

查看答案和解析>>

同步練習冊答案