已知每條棱長都為3的直平行六面體ABCD-A1B1C1D1中,∠BAD=60°,長為2的線段MN的一個端點M在DD1上運動,另一個端點N在底面ABCD上運動.則MN中點P的軌跡與該直平行六面體表面所圍成的幾何體中較小體積值為( 。
分析:根據(jù)題意,連接N點與D點,得到一個直角三角形△NMD,P為斜邊MN的中點,所以|PD|的長度不變,進而得到點P的軌跡是球面的一部分.即可求出結果.
解答:解:如圖可得,端點N在正方形ABCD內運動,(N與D不重合)連接N點與D點
由ND,DM,MN構成一個直角三角形,
設P為MN的中點,根據(jù)直角三角形斜邊上的中線長度為斜邊的一半可得
不論△MDN如何變化,P點到D點的距離始終等于1.
N與D重合也滿足題意,∠ADC=120°
故P點的軌跡是一個以D中心,半徑為1的半球的
1
3

所以所求體積為:
1
3
×
1
2
×
4
3
π
=
9
,
故選B.
點評:解決此類問題的關鍵是熟悉結合體的結構特征與球的定義以及其表面積的計算公式.考查空間想象能力,計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖已知每條棱長都為3的直平行六面體ABCD-A1B1C1D1中,∠BAD=60°,長為2的線段MN的一個端點M在DD1上運動,另一個端點N在底面ABCD上運動,則MN中點P的軌跡與直平行六面體的面所圍成的幾何體的體積為
9
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)已知每條棱長都為3的直平行六面體ABCD—A1B1C1D1中,∠BAD=60°,長為2的線段MN的一個端點M在DD1上運動,另一個端點N在底面ABCD上運動.則MN中點P的軌跡與該直平行六面體表面所圍成的幾何體中較小體積值為__________.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆四川省高二10月月考理科數(shù)學試卷(解析版) 題型:填空題

如右圖已知每條棱長都為3的四棱柱ABCD-ABCD中,底面是菱形,BAD=60°,D B⊥平面ABCD,長為2的線段MN的一個端點M在DD上運動,另一個端點N在底面ABCD上運動,則MN中點P的軌跡與此四棱柱的面所圍成的幾何體的體積為 _____________

 

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年北京市懷柔區(qū)高二(上)期末數(shù)學試卷(選修2-1)(理科)(解析版) 題型:選擇題

已知每條棱長都為3的直平行六面體ABCD-A1B1C1D1中,∠BAD=60°,長為2的線段MN的一個端點M在DD1上運動,另一個端點N在底面ABCD上運動.則MN中點P的軌跡與該直平行六面體表面所圍成的幾何體中較小體積值為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案