精英家教網 > 高中數學 > 題目詳情

已知△ABC三內角A、B、C所對的邊a,b,c,且數學公式
(1)求∠B的大小;
(2)若△ABC的面積為數學公式,求b取最小值時的三角形形狀.

解:(1)由
,2sinAcosB-cosBsinC=sinBcosC,
即2sinAcosB=cosBsinc+sinBcosC,2sinAcosB=sin(B+C),
由B+C=π-A得,2sinAcosB=sinA,
∵sinA≠0,∴
(2)由
∴b2=a2+c2-2accos60°≥2ac-ac=ac=3,當且僅當時取等號,
,故當b取最小值時,三角形為正三角形.
分析:(1)根據正弦定理化簡得出,進而得到2sinAcosB=sin(B+C),再根據B+C=π-A得,2sinAcosB=sinA,從而求出cosB,得出答案;
(2)首先利用由,然后利用均值不等式b2=a2+c2-2accos60°≥2ac-ac=ac=3,求得即,b的最小值,判斷三角形為正三角形.
點評:本題考查了正弦定理以及三角形的判斷,(2)問要注意均值不等式的利用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知△ABC三內角A、B、C所對邊的長分別為a、b、c,且3sin2A+3sin2B=4sinAsinB+3sin2C.
(Ⅰ)求cosC的值;
(Ⅱ)若a-3,c=
6
,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC三內角A、B、C所對邊分別為a,b,c面積為S且滿足2S=c2-(a-b)2和a+b=2.
(1)求sinC的值;
(2)求三角形面積S的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC三內角A、B、C滿足sinA:sinB:sinC=4:5:6,且三角形的周長是7.5,則三邊的長是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC三內角A、B、C所對的邊a,b,c,且
a2+c2-b2
a2+b2-c2
=
c
2a-c

(1)求∠B的大小;
(2)若△ABC的面積為
3
3
4
,求b取最小值時的三角形形狀.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC三內角A、B、C的大小成等差數列,且tanA•tanC=2+
3
,又知頂點C的對邊c上的高等于4
3
,求△ABC的三邊a、b、c及三內角.

查看答案和解析>>

同步練習冊答案