5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0).
(1)如果橢圓M的離心率e=$\frac{\sqrt{3}}{2}$,經(jīng)過點P(2,1).
①求橢圓M的方程;
②經(jīng)過點P的兩直線與橢圓M分別相交于A,B,它們的斜率分別為k1,k2.如果k1+k2=0,試問:直線AB的斜率是否為定值?并證明.
(2)如果橢圓M的a=2,b=1,點B,C分別為橢圓M的上、下頂點,過點T(t,2)(t≠0)的直線TB,TC分別與橢圓M交于E,F(xiàn)兩點.若△TBC的面積是△TEF的面積的k倍,求k的最大值.

分析 (1)①由已知得$\frac{c}{a}=\frac{\sqrt{3}}{2}$,$\frac{4}{{a}^{2}}$+$\frac{1}{^{2}}$=1,a2=b2+c2,聯(lián)立解出即可得出.
②直線AB的斜率為定值$\frac{1}{2}$.由已知直線PA:y-1=k1(x-2)代入橢圓M的方程消去y并整理得:(x-2)$[(1+4{k}_{1}^{2})x+(2+8{k}_{1}-8{k}_{1}^{2})]$=0,解得點A的坐標.同理解得點B的坐標.由k1+k2=0,可得kAB=$\frac{{y}_{A}-{y}_{B}}{{x}_{A}-{x}_{B}}$=$\frac{1}{2}$為定值.
(2)直線TB方程為y=$\frac{1}{t}$x+1,代入橢圓方程$\frac{{x}^{2}}{4}$+y2=1,可得:(t2+4)x2+8tx=0,解得xE,直線TC方程為:y=$\frac{3}{t}$x-1,代入橢圓方程可得:xF.k=$\frac{{S}_{△TBC}}{{S}_{△TEF}}$=$\frac{\frac{1}{2}TB•TC•sin∠BTC}{\frac{1}{2}TE•TF•sin∠ETF}$=$\frac{TB•TC}{TE•TF}$=$\frac{{x}_{T}-{x}_{B}}{{x}_{T}-{x}_{E}}$•$\frac{{x}_{T}-{x}_{C}}{{x}_{T}-{x}_{F}}$,代入化簡換元利用二次函數(shù)的單調(diào)性即可得出.

解答 解:(1)①由已知得$\frac{c}{a}=\frac{\sqrt{3}}{2}$,$\frac{4}{{a}^{2}}$+$\frac{1}{^{2}}$=1,a2=b2+c2,
聯(lián)立解得a2=8,b2=2.
橢圓M的方程為:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}$=1.
②直線AB的斜率為定值$\frac{1}{2}$.
由已知直線PA:y-1=k1(x-2)代入橢圓M的方程消去y并整理得:(x-2)$[(1+4{k}_{1}^{2})x+(2+8{k}_{1}-8{k}_{1}^{2})]$=0,
∴xA=$\frac{8{k}_{1}^{2}-8{k}_{1}-2}{1+4{k}_{1}^{2}}$,yA=$\frac{-4{k}_{1}^{2}-4{k}_{1}+1}{1+4{k}_{1}^{2}}$.
同理xB=$\frac{8{k}_{2}^{2}-8{k}_{2}-2}{1+4{k}_{2}^{2}}$,yB=$\frac{-4{k}_{1}^{2}-4{k}_{1}+1}{1+4{k}_{2}^{2}}$.
∵k1+k2=0,∴yA-yB=$\frac{4({k}_{1}-{k}_{2})(4{k}_{1}{k}_{2}-1)}{(1+4{k}_{1}^{2})(1+4{k}_{2}^{2})}$,xA-xB=$\frac{8({k}_{1}-{k}_{2})(4{k}_{1}{k}_{2}-1)}{(1+4{k}_{1}^{2})(1+4{k}_{2}^{2})}$,
∴kAB=$\frac{{y}_{A}-{y}_{B}}{{x}_{A}-{x}_{B}}$=$\frac{1}{2}$為定值.
(2)直線TB方程為y=$\frac{1}{t}$x+1,代入橢圓方程$\frac{{x}^{2}}{4}$+y2=1,可得:(t2+4)x2+8tx=0,
解得xE=$\frac{-8t}{{t}^{2}+4}$,
直線TC方程為:y=$\frac{3}{t}$x-1,代入橢圓方程可得:xF=$\frac{24t}{{t}^{2}+36}$.
k=$\frac{{S}_{△TBC}}{{S}_{△TEF}}$=$\frac{\frac{1}{2}TB•TC•sin∠BTC}{\frac{1}{2}TE•TF•sin∠ETF}$=$\frac{TB•TC}{TE•TF}$=$\frac{{x}_{T}-{x}_{B}}{{x}_{T}-{x}_{E}}$•$\frac{{x}_{T}-{x}_{C}}{{x}_{T}-{x}_{F}}$=$\frac{t}{t+\frac{8t}{{t}^{2}+4}}$$•\frac{t}{t-\frac{24t}{{t}^{2}+36}}$=$\frac{({t}^{2}+4)({t}^{2}+36)}{({t}^{2}+12)({t}^{2}+12)}$,
令t2+12=m>12,則k=$\frac{(m-8)(m+24)}{{m}^{2}}$=$1+\frac{16}{m}-\frac{192}{{m}^{2}}$=-192$(\frac{1}{m}-\frac{1}{24})^{2}$+$\frac{4}{3}$$≤\frac{4}{3}$,
當且僅當m=24,即t=$±2\sqrt{3}$時,取“=”,
所以k的最大值為$\frac{4}{3}$.

點評 本題考查了橢圓的定義標準方程及其性質(zhì)、直線與橢圓相交問題、二次函數(shù)的單調(diào)性、三角形面積計算公式、一元二次方程的根與系數(shù)的關(guān)系,考查了推理能力與計算能力,屬于難題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

15.根據(jù)正切函數(shù)的圖象,寫出使下列不等式成立的x的集合.
(1)$\frac{\sqrt{3}}{3}$+tanx≥0;
(2)tanx-$\sqrt{3}$≤0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若正數(shù)a,b滿足ab-(a+b)=1,則a+b的最小值是( 。
A.2+2$\sqrt{2}$B.2$\sqrt{2}$-2C.$\sqrt{5}$+2D.$\sqrt{5}$-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設直線l為公海的分界線,一巡邏艇在A處發(fā)現(xiàn)了北偏東60°的海面B處有一艘走私船,走私船正向停泊在公海上接應的走私海輪C航行,以便上海輪后逃竄.已知巡邏艇的航速是走私船航速的2倍,A與公海相距約為20海里,走私船可能向任一方向逃竄,請回答下列問題:
(1)如果走私船和巡邏艇都是沿直線航行,那么走私船能被截獲的點是哪些?
(2)根據(jù)截獲點的軌跡,探討“可截獲區(qū)域”和“非截獲區(qū)域”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,BC=$\sqrt{2}$,且PC⊥CD,BC⊥PA,E是PB的中點.
(1)求證:平面PBC⊥平面EAC;
(2)若二面角P-AC-E的正弦值為$\frac{{\sqrt{3}}}{3}$,求直線PA與平面EAC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在四棱錐P-ABCD中,底面ABCD為矩形,側(cè)棱PD⊥底面ABCD,且$PD=CD=\frac{{\sqrt{2}}}{2}BC$,過棱PC的中點AB1⊥PQ,作EF⊥PB交PB于點PQD,連接DE,DF,BD,BE.
(1)證明:PB⊥平面DEF.
(2)求異面直線與BE所成角的余弦值及二面角B-DE-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx,$g(x)=-\frac{a}{x}+\frac{3}{2}(a>0)$
(1)當a=1時,若曲線y=f(x)在點M(x0,f(x0))處的切線與曲線y=g(x)在點P(x0,g(x0))處的切線平行,求實數(shù)x0的值;
(2)若?x∈(0,e],都有f(x)≥g(x),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.關(guān)于x的方程2sinx-cos2x=m的解集是空集,則實數(shù)m的取值范圍是(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在平面直角坐標系xOy中,設圓C的方程為(x-a)2+(y-2a+4)2=1.
(Ⅰ)若圓C經(jīng)過A(3,3)與B(4,2)兩點,求實數(shù)a的值;
(Ⅱ)點P(0,3),若圓C上存在點M,使|MP|=2|MO|,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案