設(shè)向量abc滿足abc=0(ab)⊥c,ab,若|a|=1,則|a|2+|b|2+|c|2的值是________.

答案:4
解析:

  ∵ab,∴a·b=0,

  又(ab)⊥ca·cb·c=0

  由abc=0得(abc)2=0,

  ∴a2b2c2+2ab+2bc+2ca=0,

  ∴a2b2c2=-4bc,

  又a=-(bc),

  ∴a2=(bc)2b2c2+2b·c=1,

  ∴2bc=1-(b2c2).

  ∴a2b2c2=-2[1-(b2c2)]=-2+2(b2c2).

  ∴b2c2=3.∴a2b2c2=4.即|a|2+|b|2+|c|2=4


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
,
b,
c
滿足
a
+
b
+
c
=
0
,(
a
-
b
)⊥
c
a
b
b,若|
a
|=1
,則|
a
|2+|
b
|2+|
c
|2
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
b
、
c
滿足
a
+
b
+
c
=
0
,(
a
-
b
)⊥
c
a
b
,|
a
|=1,則|
c
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
b
,
c
滿足|
a
|=|
b
|=1,
a
b
=
1
2
,( 
a
-
c
)•( 
b
-
c
)=0,則|
c
|的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011年高考全國卷理科)設(shè)向量
a
、
b
、
c
滿足|
a
|=|
b
|=1,
a
b
=-
1
2
a
-
c
,
b
-
c
=600,則|
c
|
的最大值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
,
b
c
滿足|
a
|=|
b
|=1,
a
b
=-
1
2
,<
a
-
c
,
b
-
c
>=60°
,則|
c
|的最大值等于
2
2

查看答案和解析>>

同步練習(xí)冊答案