已知函數(shù)f(x)=x+1,其定義域?yàn)閧-1,0,1,2},則函數(shù)的值域?yàn)椋ā 。?/div>
分析:分別令x取定義域內(nèi)的所有值,可得到y(tǒng)的對(duì)應(yīng)值,從而得到函數(shù)的值域.
解答:解:∵函數(shù)f(x)=x+1,其定義域?yàn)閧-1,0,1,2},
∴分別令x=-1,0,1,2,可得y的值分別為 0,1,2,3,
故函數(shù)的值域?yàn)?{0,1,2,3},
故選C.
點(diǎn)評(píng):本題主要考查函數(shù)的定義域和值域的定義及求法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+)(x∈R) |
B、f(x)=2sin(2πx+)(x∈R) |
C、f(x)=2sin(πx+)(x∈R) |
D、f(x)=2sin(2πx+)(x∈R) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(2012•深圳一模)已知函數(shù)
f(x)=x3+bx2+cx+d,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)
g(x)=x , m>0,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(2011•上海模擬)已知函數(shù)
f(x)=(-1)2+(-1)2,x∈(0,+∞),其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2
m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k
2,b=(k+c)
2時(shí),記f(x)=f
1(x);當(dāng)a=(k+c)
2,b=(k+2c)
2時(shí),記f(x)=f
2(x).
求證:
f1(x)+f2(x)>.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:上海模擬
題型:解答題
已知函數(shù)
f(x)=(-1)2+(-1)2,x∈(0,+∞),其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2
m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k
2,b=(k+c)
2時(shí),記f(x)=f
1(x);當(dāng)a=(k+c)
2,b=(k+2c)
2時(shí),記f(x)=f
2(x).
求證:
f1(x)+f2(x)>.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:深圳一模
題型:解答題
已知函數(shù)
f(x)=x3+bx2+cx+d,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)
g(x)=x , m>0,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>