設橢圓C∶(a>0)的兩個焦點是F1(-c,0)和F2(c,0)(c>0),且橢圓C與圓x2+y2=c2有公共點.
(1)求a的取值范圍;
(2)(理)若橢圓上的點到焦點的最短距離為,求橢圓的方程;
(文)如果橢圓的兩個焦點與短軸的兩個端點恰好是正方形的四個頂點,求橢圓的方程;
(3)(理)對(2)中的橢圓C,直線l∶y=kx+m(k≠0)與C交于不同的兩點M、N,若線段MN的垂直平分線恒過點A(0,-1),求實數(shù)m的取值范圍.
(文)過(2)中橢圓右焦點F2且不與坐標軸垂直的直線l交橢圓于M、N兩點,線段MN的垂直平分線與x軸交于點Q,求點Q的橫坐標的取值范圍.
(1)由已知,, ∴方程組有實數(shù)解,從而, 3分 故,所以,即的取值范圍是. 4分 (2)(理)設橢圓上的點到一個焦點的距離為, 則 (). 6分 ∵,∴當時,, 7分 于是,,解得. 9分 ∴所求橢圓方程為. 10分 (直接給出的扣3分) (2)(文)由已知可得,從而, 8分 所以所求橢圓方程是. 10分 (3)(理)由得(*) ∵直線與橢圓交于不同兩點,∴△,即. 12分 、僭O、,則、是方程(*)的兩個實數(shù)解, ∴,∴線段的中點為, 又∵線段的垂直平分線恒過點,∴, 即,即 14分 、谟散,②得,,又由②得, ∴實數(shù)的取值范圍是. 16分 (3)(文),由題意,直線的斜率存在且不為,設直線的方程為: ,由得,(*) 設,,則是方程(*)的兩個實數(shù)解,于是,則線段的中點為. 12分 ∴線段的垂直平分線的方程為, 在上式中令,得點的橫坐標為. 14分 ∴,所以點的橫坐標的取值范圍是. 16分 |
科目:高中數(shù)學 來源: 題型:
在直角坐標系xOy中,設橢圓C:(a>b>0)的左、右兩個焦點分別為F1、F2.過右焦點F2且與x軸垂直的直線l與橢圓C相交,其中一個交點為M(,1).
(1)求橢圓C的方程;
(2)設橢圓C的一個頂點為B(0,-b),直線BF2交橢圓C于另一點N,求△F1BN的面積.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年四川省高三高考極限壓軸文科數(shù)學試卷(解析版) 題型:解答題
設橢圓C:(“a>b〉0)的左焦點為,橢圓過點P()
(1)求橢圓C的方程;
(2)已知點D(1, 0),直線l:與橢圓C交于A、B兩點,以DA和DB為鄰邊的四邊形是菱形,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆河北省高二上學期期中理科數(shù)學試卷 題型:解答題
設橢圓C:(a〉b>0)的左焦點為,橢圓過點P()
(1)求橢圓C的方程;
(2)已知點D(l,0),直線l:與橢圓C交于A、B兩點,以DA和DB為鄰邊的四邊形是菱形,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:吉林一中2009-2010學年上學期期末高二(數(shù)學)試題 題型:解答題
在直角坐標系xOy中,設橢圓C:(a>b>0)的左、右兩個焦點分別為F1、F2.過右焦點F2且與x軸垂直的直線l與橢圓C相交,其中一個交點為M(,1).
(1)求橢圓C的方程;
(2)設橢圓C的一個頂點為B(0,-b),直線BF2交橢圓C于另一點N,求△F1BN的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com