設(shè)函數(shù)f(x)=x2+|2x-a|,(x∈R,a為實數(shù))
(1)若f(x)為偶函數(shù),求實數(shù)a的值;
(2)記函數(shù)f(x)的最小值為g(a),求g(a);
(3)g(a)的最小值.
解:(1)∵f(x)=x
2+|2x-a|,
若f(x)為偶函數(shù),
則f(-x)=x
2+|-2x-a|=f(x)
即|2x-a|=|-2x-a|=|2x+a|
故a=0
(2)∵f(x)=x
2+|2x-a|=
當(dāng)a<-2時,則當(dāng)x=-1時,函數(shù)f(x)取最小值,即g(a)=f(-1)=-a-1
當(dāng)-2≤a≤2時,則當(dāng)x=
時,函數(shù)f(x)取最小值,即g(a)=f(
)=
當(dāng)a>2時,則當(dāng)x=1時,函數(shù)f(x)取最小值,即g(a)=f(1)=a-1
∴g(a)=
(3)由(2)得
當(dāng)a<-2時,g(a)>1
當(dāng)-2≤a≤2時,0≤g(a)≤1
當(dāng)a>2時,g(a)>1
綜上所述函數(shù)g(a)最小值為0
分析:(1)根據(jù)f(x)為偶函數(shù),滿足f(-x)=f(x),構(gòu)造關(guān)于a的方程,解方程可得實數(shù)a的值;
(2)利用零點分段法,可將函數(shù)f(x)的解析式化為分段函數(shù),結(jié)合二次函數(shù)的性質(zhì),可求出g(a)的解析式;
(3)根據(jù)分段函數(shù)分段處理的原則,分別求出各段上的最小值,比較后,可得g(a)的最小值
點評:本題考查的知識點是分段函數(shù)的值域,函數(shù)的奇偶性的定義,二次函數(shù)的圖象和性質(zhì),難度中檔.