設(shè)函數(shù)f(x)=x+x3,若對(duì)于任意的實(shí)數(shù)a和b,有f(a)+f(b)>0,則一定有( )
A.a(chǎn)-b>0
B.a(chǎn)-b<0
C.a(chǎn)+b>0
D.a(chǎn)+b<0
【答案】分析:根據(jù)題意,判斷可得f(x)為奇函數(shù),且為增函數(shù),對(duì)于f(a)+f(b)>0,變形可得f(a)>-f(b),結(jié)合函數(shù)的單調(diào)性與奇偶性,可得a>-b,即a+b>0,即可得答案.
解答:解:根據(jù)題意,f(x)的定義域?yàn)槿w實(shí)數(shù),且f(-x)=-x-x3=-f(x),
則f(x)為奇函數(shù),
又由f'(x)=1+3x2,易得f'(x)>0恒成立,
則f(x)為增函數(shù),
若f(a)+f(b)>0,則f(a)>-f(b),
又由f(x)為奇函數(shù),則f(a)>f(-b),
函數(shù)為增函數(shù),則a>-b,即a+b>0,
故選C.
點(diǎn)評(píng):本題考查函數(shù)單調(diào)性的應(yīng)用,關(guān)鍵是判斷出函數(shù)的單調(diào)性與奇偶性,進(jìn)而應(yīng)用到f(x).