已知函數(shù)f(x)=x3-x2+,且存在x0∈(0,),使f(x0)=x0.
(1)證明f(x)是R上的單調(diào)增函數(shù);
(2)設(shè)x1=0,xn+1=f(xn),y1=,yn+1=f(yn),其中n=1,2,…,證明xn<xn+1<x0<yn+1<yn;
(3)證明.
證明:(1)∵x=3x2-2x+=3()2+>0, ∴f(x)是R上的單調(diào)增函數(shù). (2)∵0<x0<,即x1<x0<y1, 又f(x)是增函數(shù),∴f(x1)<f(x0)<f(y1), 即x2<x0<y2.又x2=f(x1)=f(0)=>0=x1,y2=f(y1)=f()==y(tǒng)1. 綜上,x1<x2<x0<y2<y1 用數(shù)學(xué)歸納法證明如下:①當(dāng)n=1時(shí),上面已證明成立. ②假設(shè)當(dāng)n=k(k≥1)時(shí),有xk<xk+1<x0<yk+1<yk. 當(dāng)n=k+1時(shí),由f(x)是單調(diào)遞增函數(shù),有f(xk)<f(xk+1)<f(x0)<f(yk+1)<f(yk), ∴xk+1<xk+2<x0<yk+2<yk+1. 由①和②知對(duì)一切n=1,2,…都有xn<xn+1<x0<yn+1<yn. (3)-(yn+xn)+≤(yn+xn)2-(yn+xn)+=[(yn+xn)-]2+. 由(2)知0<yn+xn<1, ∴. ∴. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=x|m-x|(x∈R),且f(4)=0.
(1)求實(shí)數(shù)m的值;
(2)作出函數(shù)f(x)的圖像;
(3)根據(jù)圖像指出f(x)的單調(diào)遞減區(qū)間;
(4)根據(jù)圖像寫出不等式f(x)>0的解集;
(5)求當(dāng)x∈[1,5)時(shí)函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:新課標(biāo)高三數(shù)學(xué)對(duì)數(shù)與對(duì)數(shù)函數(shù)、反比例函數(shù)與冪函數(shù)專項(xiàng)訓(xùn)練(河北) 題型:解答題
已知函數(shù)f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),其中x∈[0,15],a>0,且a≠1.
(1)若1是關(guān)于x的方程f(x)-g(x)=0的一個(gè)解,求t的值;
(2)當(dāng)0<a<1時(shí),不等式f(x)≥g(x)恒成立,求t的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江西省高二下學(xué)期第二次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=|x+1|,g(x)=2|x|+a.
(1)當(dāng)a=0時(shí),解不等式f(x)≥g(x);
(2)若任意x∈R,f(x)g(x)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆新課標(biāo)高三配套第四次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=x3+x2-ax-a,x∈R,其中a>0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍;
(3)當(dāng)a=1時(shí),設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省、岳陽縣一中高三11月聯(lián)考理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)(第一問8分,第二問5分)
已知函數(shù)f(x)=2lnx,g(x)=ax2+3x.
(1)設(shè)直線x=1與曲線y=f(x)和y=g(x)分別相交于點(diǎn)P、Q,且曲線y=f(x)和y=g(x)在點(diǎn)P、Q處的切線平行,若方程f(x2+1)+g(x)=3x+k有四個(gè)不同的實(shí)根,求實(shí)數(shù)k的取值范圍;
(2)設(shè)函數(shù)F(x)滿足F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導(dǎo)函數(shù);試問是否存在實(shí)數(shù)a,使得當(dāng)x∈(0,1]時(shí),F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com