(04年北京卷理)(14分)
如圖,在正三棱柱ABC=A1B1C1中,AB=3,AA1=4,M為AA1的中點(diǎn),P是BC上一點(diǎn),且由P沿棱柱側(cè)面經(jīng)過棱CC1到M的最短路線長(zhǎng)為,設(shè)這條最短路線與CC1的交點(diǎn)為N,求:
(I)該三棱柱的側(cè)面展開圖的對(duì)角線長(zhǎng);
(II)PC和NC的長(zhǎng);
(III)平面NMP與平面ABC所成二面角(銳角)的大。ㄓ梅慈呛瘮(shù)表示)。
解析:(I)正三棱柱ABC-A1B1C1的側(cè)面展開圖是一個(gè)長(zhǎng)為9,寬為4的矩形,其對(duì)角線長(zhǎng)為。
(II)如圖1,將側(cè)面BB1C1C繞棱CC1旋轉(zhuǎn)120°使其與側(cè)面AA1C1C在同一平面上,點(diǎn)P運(yùn)動(dòng)到點(diǎn)P1的位置,連接MP1,則MP1就是由點(diǎn)P沿棱柱側(cè)面經(jīng)過棱CC1到點(diǎn)M的最短路線。
設(shè)PC=x,則P1C=x在Rt△MAP1中,由勻股定理得(3+x)2+22=29,
求得x=2.
∴PC=P1C=2.
∵,
∴NC=
(III)如圖2,連接PP1,則PP1就是平面NMP與平面ABC的交線,作NH⊥PP1于H,又CC1⊥平面ABC,連結(jié)CH,由三垂線定理得,CH⊥PP1.
∴∠NHC就是平面NMP與平面ABC所成二面角的平面角(銳角).
在Rt△PHC中,∵∠PCH=∠PCP1=60°,
∴CH==1
在Rt△NCH中,tg∠NHC=,
故平面NMP與平面ABC所成二面角(銳角)的大小為arctg.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(04年北京卷理)(14分)
如圖,過拋物線y2=2px (p>0) 上一定點(diǎn)P(x0, y0) (y0>0),作兩條直線分別交拋物線于A(x1,y1),B(x2,y2).
(I)求該拋物線上縱坐標(biāo)為的點(diǎn)到其焦點(diǎn)F的距離;
(II)當(dāng)PA與PB的斜率存在且傾斜角互補(bǔ)時(shí),
求的值,并證明直線AB的斜率是非零常數(shù)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com