13.2017年實驗中學(xué)要給三個班級補發(fā)8套教具,先將其分成3堆,其中一堆4個,另兩堆每堆2個,一共有多少種不同分堆方法( 。
A.C${\;}_{8}^{4}$C${\;}_{4}^{2}$C${\;}_{2}^{2}$B.C${\;}_{3}^{1}$C${\;}_{8}^{2}$
C.$\frac{{C}_{8}^{4}{C}_{4}^{2}}{{A}_{2}^{2}}$D.$\frac{{C}_{8}^{4}{C}_{4}^{2}{C}_{2}^{2}}{{A}_{3}^{3}}$

分析 根據(jù)局部均勻分組的方法計算即可

解答 解:8套教具分成3堆,其中一堆4個,另兩堆每堆2個,一共有$\frac{{C}_{8}^{4}{C}_{4}^{2}}{{A}_{2}^{2}}$,
故選:C

點評 本題考查排列、組合及簡單計數(shù)問題,考查學(xué)生的計算能力,理解能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.?dāng)?shù)列{an}中,a1=1,an+1=2an+2,則a7的值為( 。
A.94B.96C.190D.192

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.給出下列命題:①若a<b<0,則$\frac{1}{a}$<$\frac{1}$;②若a>0,b>0,則$\frac{a+b}{2}$≥$\sqrt{ab}$≥$\frac{ab}{a+b}$;③若a<b<0,則a2>ab>b2;④lg9•lg 11<1;⑤若a>b,$\frac{1}{a}$>$\frac{1}$,則a>0,b<0;⑥正數(shù)x,y滿足$\frac{1}{x}$+$\frac{1}{y}$=1,則x+2y的最小值為6.其中正確命題的序號是②③④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,AC=8,BC=5,面積S△ABC=10$\sqrt{3}$,則$\overrightarrow{BC}•\overrightarrow{CA}$=±20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知向量$\overrightarrow a=(1,\sqrt{3})$,$\overrightarrow b=(cosx,sinx)$,函數(shù)$f(x)=\overrightarrow a•\overrightarrow b-1$.
(1)若f(x)=0,求x的集合;
(2)若$x∈[0,\frac{π}{2}]$,求f(x)的單調(diào)區(qū)間及最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知向量$\overrightarrow{O{Z}_{1}}$與$\overrightarrow{O{Z}_{2}}$對應(yīng)的復(fù)數(shù)是z1與z2
(1)求|z1-z2|
(2)已知$\frac{z-{z}_{1}}{z-{z}_{2}}$=-1-i,求z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)y=f(x)的定義域為D,若對于任意x1,x2∈D,當(dāng)x1+x2=2a時,恒有f(x1)+f(x2)=2b,則稱點(a,b)為函數(shù)y=f(x)圖象的對稱中心.研究函數(shù)f(x)=x+sinπx-3的某一個對稱中心,并利用對稱中心的上述定義,可得到$f(\frac{1}{2017})+f(\frac{2}{2017})+f(\frac{3}{2017})+…+f(\frac{4032}{2017})+f(\frac{4033}{2017})$的值為( 。
A.-4033B.4033C.8066D.-8066

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.正△ABC的三個頂點都在球O的球面上,AB=AC=2,若三棱錐O-ABC的體積為2,則該球的表面積為$\frac{160π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知$\overrightarrow a$=(sinωx,cosωx),$\overrightarrow b$=(sinωx+2cosωx,cosωx),x∈R,ω>0,記f(x)=$\overrightarrow a•\overrightarrow b$且該函數(shù)的最小正周期為$\frac{π}{4}$.
(1)求ω的值;
(2)求函數(shù)f(x)的最大值,并且求使f(x)取得最大值的x的集合.

查看答案和解析>>

同步練習(xí)冊答案