設(shè)x>-1,求f(x)=的最值.

答案:
解析:

  

  [點評](1)在使用算術(shù)平均數(shù)與幾何平均數(shù)定理中的字母不一定只代表一個數(shù),而有時可以代表一個多項式.

  (2)利用算術(shù)平均數(shù)與幾何平均數(shù)定理求函數(shù)最值時要注意變量是否為正,和或積是否為定值,等號能否成立(等號成立時,是否滿足函數(shù)定義域).有些題目從形式上看不能使積或和為定值,但通過變形,可以使積或和為定值,要注意變形技巧.

  


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知:函數(shù)f(x)對一切實數(shù)x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值.
(2)求f(x)的解析式.
(3)已知a∈R,設(shè)P:當(dāng)0<x<
12
時,不等式f(x)+3<2x+a恒成立;Q:當(dāng)x∈[-2,2]時,g(x)=f(x)-ax是單調(diào)函數(shù).如果滿足P成立的a的集合記為A,滿足Q成立的a的集合記為B,求A∩CRB(R為全集).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為[0,1],且同時滿足以下①②③三個條件:
①f(1)=3;
②f(x)≥2對一切x∈[0,1]恒成立;
③若a≥0,b≥0,a+b≤1,則f(a+b)≥f(a)+f(b)-2.
(1)求f(0);
(2)設(shè)x1,x2∈[0,1],且x1<x2,試證明f(x1)≤f(x2)并利用此結(jié)論求函數(shù)f(x)的最大值和最小值;
(3)試比較f(
1
2
)與
1
2
+2
(n∈N)的大小,并證明對一切x∈(0,1],都有f(x)<2x+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為[0,1],且同時滿足:①f(1)=3;②f(x)≥2對一切x∈[0,1]恒成立;③若x1≥0,x2≥0,x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)-2
(1)求f(0)的值
(2)設(shè)s,t∈[0,1],且s<t,求證:f(s)≤f(t)
(3)試比較f(
1
2n
)
1
2n
+2
(n∈N)的大。
(4)某同學(xué)發(fā)現(xiàn),當(dāng)x=
1
2n
(n∈N)時,有f(x)<2x+2,由此他提出猜想:對一切x∈(0,1],都有f(x)<2x+2,請你判斷此猜想是否正確,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

仔細閱讀下面問題的解法:
設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實數(shù)a的取值范圍.
解:由已知可得  a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
∴a<2即為所求.
學(xué)習(xí)以上問題的解法,解決下面的問題:
(1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
(2)對于(1)中的A,設(shè)g(x)=
10-x
10+x
x∈A,試判斷g(x)的單調(diào)性;(不證)
(3)又若B={x|
10-x
10+x
>2x+a-5},若A∩B≠Φ,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案