設(shè)f(x)是定義在[0,1]上的函數(shù),若存在x*∈(0,1),使得f(x)在[0,x*]上單調(diào)遞增,在[x*,1]上單調(diào)遞減,則稱f(x)為[0,1]上的單峰函數(shù),x*為峰點(diǎn),包含峰點(diǎn)的區(qū)間為含峰區(qū)間.

對(duì)任意的[0,l]上的單峰函數(shù)f(x),下面研究縮短其含峰區(qū)間長(zhǎng)度的方法.

(1)證明:對(duì)任意的x1,x2∈(0,1),x1x2,若f(x1)≥f(x2),則(0,x2)為含峰區(qū)間;若f(x1)≤f(x2),則(x*,1)為含峰區(qū)間;

(2)對(duì)給定的r(0<r<0.5=,證明:存在x1x2∈(0,1),滿足x2x1≥2r,使得由(Ⅰ)所確定的含峰區(qū)間的長(zhǎng)度不大于0.5+r;

(3)選取x1,x2∈(0,1),x1x2,由(Ⅰ)可確定含峰區(qū)間為(0,x2)或(x1,1),在所得的含峰區(qū)間內(nèi)選取x3,由x3x1x3x2類似地可確定一個(gè)新的含峰區(qū)間.在第一次確定的含峰區(qū)間為(0,x2)的情況下,試確定x1,x2,x3的值,滿足兩兩之差的絕對(duì)值不小于0.02,且使得新的含峰區(qū)間的長(zhǎng)度縮短到0.34.(區(qū)間長(zhǎng)度等于區(qū)間的右端點(diǎn)與左端點(diǎn)之差)

答案:
解析:

  (1)證明:設(shè)x*為f(x)的峰點(diǎn),則由單峰函數(shù)定義可知,f(x)在[0,x*]上單調(diào)遞增,在[x*,1]上單調(diào)遞減.

  當(dāng)f(x1)≥f(x2)時(shí),假設(shè)x*(0,x2),則x1x2x*,從而f(x*)≥f(x2)>f(x1),這與f(x1)≥f(x2)矛盾,所以x*∈(0,x2),即(0,x2)是含峰區(qū)間.

  當(dāng)f(x1)≤f(x2)時(shí),假設(shè)x*(x2,1),則x*<≤x1x2

  從而f(x*)≥f(x1)>f(x2),

  這與f(x1)≤f(x2)矛盾,所以x*∈(x1,1),即(x1,1)是含峰區(qū)間.

  (2)證明:由(I)的結(jié)論可知:

  當(dāng)f(x1)≥f(x2)時(shí),含峰區(qū)間的長(zhǎng)度為l1x2;

  當(dāng)f(x1)≤f(x2)時(shí),含峰區(qū)間的長(zhǎng)度為l2=1-x1

  對(duì)于上述兩種情況,由題意得

  

  由①得1+x2x1≤1+2r,即x1x1≤2r.

  又因?yàn)?I>x2x1≥2r,所以x2x1=2r,②

  將②代入①得x1≤0.5-r,x2≥0.5-r,③

  由①和③解得x1=0.5-r,x2=0.5+r.

  所以這時(shí)含峰區(qū)間的長(zhǎng)度l1l1=0.5+r,即存在x1x2使得所確定的含峰區(qū)間的長(zhǎng)度不大于0.5+r.

  (3)解:對(duì)先選擇的x1;x2,x1x2,由(Ⅱ)可知x1x2=1,④

  在第一次確定的含峰區(qū)間為(0,x2)的情況下,x3的取值應(yīng)滿足x3x1x2,⑤

  由④與⑤可得,當(dāng)x1x3時(shí),含峰區(qū)間的長(zhǎng)度為x1

  由條件x1x3≥0.02,得x1-(1-2x1)≥0.02,從而x1≥0.34.

  因此,為了將含峰區(qū)間的長(zhǎng)度縮短到0.34,只要取x1=0.34,x2=0.66,x3=0.32.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在A上的減函數(shù),且f(x)>0,則下列函數(shù)中為增函數(shù)的個(gè)數(shù)是(    )

①y=3-f(x)  ②y=1+  ③y=[f(x)]2  ④y=1-

A.1               B.2                C.3               D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上,以2為周期的周期函數(shù),當(dāng)x∈(-1,1]時(shí),f(x)=x2.求:

       (1)當(dāng)x∈(1,3]時(shí),f(x)的表達(dá)式;

       (2)f(-3)及f(3.5)的值.

      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的以3為周期的奇函數(shù),若f(1)>1,f(2)=,則實(shí)數(shù)a的取值范圍是(    )

A.a(chǎn)<-1或a>                       B.-l<a<

C.a(chǎn)<                                  D.a(chǎn)<且a≠-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年大綱版高三上學(xué)期單元測(cè)試(6)數(shù)學(xué)試卷 題型:解答題

設(shè)f(x)是定義在[-1,1]上的奇函數(shù),且對(duì)任意的實(shí)數(shù)a,b∈[-1,1],當(dāng)a+b

≠0時(shí),都有>0.

 

(1)若a>b,試比較f(a)與f(b)的大小;

(2)解不等式f(x-)<f(x-);

 

(3)如果g(x)=f(x-c)和h(x)=f(x-c2)這兩個(gè)函數(shù)的定義域的交集是空集,求c的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省2010年高考預(yù)測(cè)試題數(shù)學(xué) 題型:解答題

設(shè)f(x)是定義在[0,1]上的函數(shù),若存在x*∈(0,1),使得f(x)在[0,x*]上單調(diào)遞增,在[x*,1]上單調(diào)遞減,則稱f(x)為[0,1]上的單峰函數(shù),x*為峰點(diǎn),包含峰點(diǎn)的區(qū)間為含峰區(qū)間.對(duì)任意的[0,1]上的單峰函數(shù)f(x),下面研究縮短其含峰區(qū)間長(zhǎng)度的方法.

  (I)證明:對(duì)任意的∈(O,1),,若f()≥f(),則(0,)為含峰區(qū)間:若f()f(),則為含峰區(qū)間:

  (II)對(duì)給定的r(0<r<0.5),證明:存在∈(0,1),滿足,使得由(I)所確定的含峰區(qū)間的長(zhǎng)度不大于0.5+r:

  (III)選取∈(O,1),,由(I)可確定含峰區(qū)間為,在所得的含峰區(qū)間內(nèi)選取,由類似地可確定一個(gè)新的含峰區(qū)間,在第一次確定的含峰區(qū)間為(0,)的情況下,試確定的值,滿足兩兩之差的絕對(duì)值不小于0.02,且使得新的含峰區(qū)間的長(zhǎng)度縮短到0. 34(區(qū)間長(zhǎng)度等于區(qū)間的右端點(diǎn)與左端點(diǎn)之差)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案