設(shè)f(x)是定義在[0,1]上的函數(shù),若存在x*∈(0,1),使得f(x)在[0,x*]上單調(diào)遞增,在[x*,1]上單調(diào)遞減,則稱f(x)為[0,1]上的單峰函數(shù),x*為峰點(diǎn),包含峰點(diǎn)的區(qū)間為含峰區(qū)間.
對(duì)任意的[0,l]上的單峰函數(shù)f(x),下面研究縮短其含峰區(qū)間長(zhǎng)度的方法.
(1)證明:對(duì)任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),則(0,x2)為含峰區(qū)間;若f(x1)≤f(x2),則(x*,1)為含峰區(qū)間;
(2)對(duì)給定的r(0<r<0.5=,證明:存在x1,x2∈(0,1),滿足x2-x1≥2r,使得由(Ⅰ)所確定的含峰區(qū)間的長(zhǎng)度不大于0.5+r;
(3)選取x1,x2∈(0,1),x1<x2,由(Ⅰ)可確定含峰區(qū)間為(0,x2)或(x1,1),在所得的含峰區(qū)間內(nèi)選取x3,由x3與x1或x3與x2類似地可確定一個(gè)新的含峰區(qū)間.在第一次確定的含峰區(qū)間為(0,x2)的情況下,試確定x1,x2,x3的值,滿足兩兩之差的絕對(duì)值不小于0.02,且使得新的含峰區(qū)間的長(zhǎng)度縮短到0.34.(區(qū)間長(zhǎng)度等于區(qū)間的右端點(diǎn)與左端點(diǎn)之差)
(1)證明:設(shè)x*為f(x)的峰點(diǎn),則由單峰函數(shù)定義可知,f(x)在[0,x*]上單調(diào)遞增,在[x*,1]上單調(diào)遞減. 當(dāng)f(x1)≥f(x2)時(shí),假設(shè)x*(0,x2),則x1<x2<x*,從而f(x*)≥f(x2)>f(x1),這與f(x1)≥f(x2)矛盾,所以x*∈(0,x2),即(0,x2)是含峰區(qū)間. 當(dāng)f(x1)≤f(x2)時(shí),假設(shè)x*(x2,1),則x*<≤x1<x2, 從而f(x*)≥f(x1)>f(x2), 這與f(x1)≤f(x2)矛盾,所以x*∈(x1,1),即(x1,1)是含峰區(qū)間. (2)證明:由(I)的結(jié)論可知: 當(dāng)f(x1)≥f(x2)時(shí),含峰區(qū)間的長(zhǎng)度為l1=x2; 當(dāng)f(x1)≤f(x2)時(shí),含峰區(qū)間的長(zhǎng)度為l2=1-x1; 對(duì)于上述兩種情況,由題意得 ① 由①得1+x2-x1≤1+2r,即x1-x1≤2r. 又因?yàn)?I>x2-x1≥2r,所以x2-x1=2r,② 將②代入①得x1≤0.5-r,x2≥0.5-r,③ 由①和③解得x1=0.5-r,x2=0.5+r. 所以這時(shí)含峰區(qū)間的長(zhǎng)度l1=l1=0.5+r,即存在x1,x2使得所確定的含峰區(qū)間的長(zhǎng)度不大于0.5+r. (3)解:對(duì)先選擇的x1;x2,x1<x2,由(Ⅱ)可知x1+x2=1,④ 在第一次確定的含峰區(qū)間為(0,x2)的情況下,x3的取值應(yīng)滿足x3+x1=x2,⑤ 由④與⑤可得,當(dāng)x1>x3時(shí),含峰區(qū)間的長(zhǎng)度為x1. 由條件x1-x3≥0.02,得x1-(1-2x1)≥0.02,從而x1≥0.34. 因此,為了將含峰區(qū)間的長(zhǎng)度縮短到0.34,只要取x1=0.34,x2=0.66,x3=0.32. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
①y=3-f(x) ②y=1+ ③y=[f(x)]2 ④y=1-
A.1 B
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)當(dāng)x∈(1,3]時(shí),f(x)的表達(dá)式;
(2)f(-3)及f(3.5)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A.a(chǎn)<-1或a> B.-l<a<
C.a(chǎn)< D.a(chǎn)<且a≠-1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年大綱版高三上學(xué)期單元測(cè)試(6)數(shù)學(xué)試卷 題型:解答題
設(shè)f(x)是定義在[-1,1]上的奇函數(shù),且對(duì)任意的實(shí)數(shù)a,b∈[-1,1],當(dāng)a+b
≠0時(shí),都有>0.
(1)若a>b,試比較f(a)與f(b)的大小;
(2)解不等式f(x-)<f(x-);
(3)如果g(x)=f(x-c)和h(x)=f(x-c2)這兩個(gè)函數(shù)的定義域的交集是空集,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省2010年高考預(yù)測(cè)試題數(shù)學(xué) 題型:解答題
設(shè)f(x)是定義在[0,1]上的函數(shù),若存在x*∈(0,1),使得f(x)在[0,x*]上單調(diào)遞增,在[x*,1]上單調(diào)遞減,則稱f(x)為[0,1]上的單峰函數(shù),x*為峰點(diǎn),包含峰點(diǎn)的區(qū)間為含峰區(qū)間.對(duì)任意的[0,1]上的單峰函數(shù)f(x),下面研究縮短其含峰區(qū)間長(zhǎng)度的方法.
(I)證明:對(duì)任意的∈(O,1),,若f()≥f(),則(0,)為含峰區(qū)間:若f()f(),則為含峰區(qū)間:
(II)對(duì)給定的r(0<r<0.5),證明:存在∈(0,1),滿足,使得由(I)所確定的含峰區(qū)間的長(zhǎng)度不大于0.5+r:
(III)選取∈(O,1),,由(I)可確定含峰區(qū)間為或,在所得的含峰區(qū)間內(nèi)選取,由與或與類似地可確定一個(gè)新的含峰區(qū)間,在第一次確定的含峰區(qū)間為(0,)的情況下,試確定的值,滿足兩兩之差的絕對(duì)值不小于0.02,且使得新的含峰區(qū)間的長(zhǎng)度縮短到0. 34(區(qū)間長(zhǎng)度等于區(qū)間的右端點(diǎn)與左端點(diǎn)之差)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com