已知兩條直線l1:y=m和l2:y=,l1與函數(shù)y=|log2x|的圖象從左至右相交于點(diǎn)A、B,l2與函數(shù)y=|log2x|的圖象從左至右相交于點(diǎn)C、D.記線段AC和BD在x軸上的投影長(zhǎng)度分別為a、b.當(dāng)m變化時(shí),求的最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某公司以每噸10萬(wàn)元的價(jià)格銷售某種產(chǎn)品,每年可售出該產(chǎn)品1000噸,若將該產(chǎn)品每噸的價(jià)格上漲x%,則每年的銷售數(shù)量將減少,該產(chǎn)品每噸的價(jià)格上漲百分之幾,可使銷售的總金額最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

市場(chǎng)營(yíng)銷人員對(duì)過(guò)去幾年某商品的價(jià)格及銷售數(shù)量的關(guān)系作數(shù)據(jù)分析發(fā)現(xiàn)有如下規(guī)律:該商品的價(jià)格每上漲x%(x>0),銷售數(shù)量就減少kx%(其中k為正常數(shù)).目前該商品定價(jià)為每個(gè)a元,統(tǒng)計(jì)其銷售數(shù)量為b個(gè).
(1)當(dāng)k=時(shí),該商品的價(jià)格上漲多少,才能使銷售的總金額達(dá)到最大?
(2)在適當(dāng)?shù)臐q價(jià)過(guò)程中,求使銷售總金額不斷增加時(shí)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某地方政府在某地建一座橋,兩端的橋墩相距m米,此工程只需建兩端橋墩之間的橋面和橋墩(包括兩端的橋墩).經(jīng)預(yù)測(cè),一個(gè)橋墩的費(fèi)用為256萬(wàn)元,相鄰兩個(gè)橋墩之間的距離均為x,且相鄰兩個(gè)橋墩之間的橋面工程費(fèi)用為(1+)x萬(wàn)元,假設(shè)所有橋墩都視為點(diǎn)且不考慮其他因素,記工程總費(fèi)用為y萬(wàn)元.
(1)試寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)m=1280米時(shí),需要新建多少個(gè)橋墩才能使y最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

畫出函數(shù)y=的圖象,并利用圖象回答:k為何值時(shí),方程=k無(wú)解?有一個(gè)解?有兩個(gè)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=x2+mx+n的圖象過(guò)點(diǎn)(1,3),且f(-1+x)=f(-1-x)對(duì)任意實(shí)數(shù)都成立,函數(shù)y=g(x)與y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱.
(1)求f(x)與g(x)的解析式;
(2)若F(x)=g(x)-λf(x)在(-1,1]上是增函數(shù),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

首屆世界低碳經(jīng)濟(jì)大會(huì)在南昌召開,本屆大會(huì)以“節(jié)能減排,綠色生態(tài)”為主題.某單位在國(guó)家科研部門的支持下,進(jìn)行技術(shù)攻關(guān),采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為y=x2-200x+80 000,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價(jià)值為100元.
(1)該單位每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?
(2)該單位每月能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則國(guó)家至少需要補(bǔ)貼多少元才能使該單位不虧損?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)f(x)=ax2+bx+b-1(a≠0).
(1)當(dāng)a=1,b=-2時(shí),求函數(shù)f(x)的零點(diǎn);
(2)若對(duì)任意b∈R,函數(shù)f(x)恒有兩個(gè)不同零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)f(x)的二次項(xiàng)系數(shù)為a,且不等式f(x)>2x的解集為(-1,3).
(1)若函數(shù)g(x)=xf(x)在區(qū)間內(nèi)單調(diào)遞減,求a的取值范圍;
(2)當(dāng)a=-1時(shí),證明方程f(x)=2x3-1僅有一個(gè)實(shí)數(shù)根;
(3)當(dāng)x∈[0,1]時(shí),試討論|f(x)+(2a-1)x+3a+1|≤3成立的充要條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案