如圖(1),矩形ABCD中,M、N分別為邊AD、BC的中點(diǎn),E、F分別為邊AB、CD上的定點(diǎn)且滿足EB=FC,現(xiàn)沿虛線折疊使點(diǎn)B、C重合且與E、F共線,如圖(2).若此時(shí)
二面角A-MN-D的大小為60°,則折疊后EN與平面MNFD所成角的正弦值是( )
(A)
(B)
(C)
(D)
過E作EQ//AM交MN于Q,連接FQ,則
就是二面角A-MN-D所成角的平面角,所以
,
為等邊三角形,
設(shè)
則
,所以平面
平面MNFD,取FQ的中點(diǎn)H,連接EH,HN,
則
平面MNFD,所以
就是EN與平面MNFD所成角,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232304279381682.png" style="vertical-align:middle;" />.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如右圖已知每條棱長都為3的四棱柱ABCD-A
B
C
D
中,底面是菱形,
BAD=60°,D B
⊥平面ABCD,長為2的線段MN的一個(gè)端點(diǎn)M在DD
上運(yùn)動(dòng),另一個(gè)端點(diǎn)N在底面ABCD上運(yùn)動(dòng),則MN中點(diǎn)P的軌跡與此四棱柱的面所圍成的幾何體的體積為 _____________
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)如圖,已知四棱錐P-ABCD,側(cè)面PAD為邊長等于2的正三角形,底面ABCD為菱形,∠DAB=60°.
(1)證明:∠PBC=90°;
(2)若PB=3,求直線AB與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若一個(gè)二面角的兩個(gè)半平面與另一個(gè)二面角的兩個(gè)半平面互相垂直,則這兩個(gè)二面角的大小 ( )
A.相等 | B.互補(bǔ) | C.相等或互補(bǔ) | D.無法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知長方體
中,
,E、F分別為
和AD的中點(diǎn),則異面直線
、EF所成的角為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
四面體
中,各個(gè)面都是邊長為
的正三角形,
分別是
和
的中 點(diǎn),則異面直線
與
所成的角等于( )
A
B
C
D
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在
中,若
為直角,則有
;類比到三棱錐
中,若三個(gè)側(cè)面
兩兩垂直,且分別與底面所成的角為
,則有
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在棱長為1的正方體
ABCD-
A1B1C1D1中,
M和
N分別為
A1B1和
BB1的中點(diǎn),那么直線
AM與
CN所成角的余弦值是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
三棱錐S—ABC的三條側(cè)棱兩兩互相垂直,且SA=1,BS=
,SC=
,則底面內(nèi)的角∠ABC等于( )
查看答案和解析>>