如圖1,在等腰直角三角形中,,,分別是上的點(diǎn),,

的中點(diǎn).將沿折起,得到如圖2所示的四棱錐,其中.

(Ⅰ) 證明:平面

(Ⅱ) 求二面角的平面角的余弦值.

 

【答案】

(Ⅰ)見(jiàn)解析 (Ⅱ)

【解析】(Ⅰ) 在圖1中,易得

連結(jié),在中,由余弦定理可得

由翻折不變性可知,

所以,所以,

理可證, 又,所以平面.

(Ⅱ) 傳統(tǒng)法:過(guò)的延長(zhǎng)線于,連結(jié),

因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013081613345620838600/SYS201308161335539234270003_DA.files/image011.png">平面,所以,

所以為二面角的平面角.

結(jié)合圖1可知,中點(diǎn),故,從而

所以,所以二面角的平面角的余弦值為.

向量法:以點(diǎn)為原點(diǎn),建立空間直角坐標(biāo)系如圖所示,

,,

所以,

設(shè)為平面的法向量,則

,即,解得,令,得

由(Ⅰ) 知,為平面的一個(gè)法向量,

所以,即二面角的平面角的余弦值為.

解決折疊問(wèn)題,需注意一下兩點(diǎn):1.一定要關(guān)注“變量”和“不變量”在證明和計(jì)算中的應(yīng)用:折疊時(shí)位于棱同側(cè)的位置關(guān)系和數(shù)量關(guān)系不變;位于棱兩側(cè)的位置關(guān)系與數(shù)量關(guān)系變;2.折前折后的圖形結(jié)合起來(lái)使用.如本題第一問(wèn),關(guān)鍵是由翻折不變性可知,借助勾股定理進(jìn)行證明垂直關(guān)系;(2)利用三垂線定理法或者空間向量法求解二面角. 求二面角:關(guān)鍵是作出或找出其平面角,常用做法是利用三垂線定理定角法,先找到一個(gè)半平面的垂線,然后過(guò)垂足作二面角棱的垂線,再連接第三邊,即可得到平面角。若考慮用向量來(lái)求:要求出二個(gè)面的法向量,然后轉(zhuǎn)化為,要注意兩個(gè)法向量的夾角與二面角可能相等也可能互補(bǔ),要從圖上判斷一下二面角是銳二面角還是鈍二面角,然后根據(jù)余弦值確定相等或互補(bǔ)即可。

【考點(diǎn)定位】考查折疊問(wèn)題和二面角的求解,考查空間想象能力和計(jì)算能力.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系xoy中,拋物線y=
1
18
x2-
4
9
x-10與x軸的交點(diǎn)為A,與y軸的交點(diǎn)為點(diǎn)B,過(guò)點(diǎn)B作x軸的平行線BC,交拋物線于點(diǎn)C,連接AC、現(xiàn)有兩動(dòng)點(diǎn)P,Q分別從O,C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P以每秒4個(gè)單位的速度沿OA向終點(diǎn)A移動(dòng),點(diǎn)Q以每秒1個(gè)單位的速度沿CB向點(diǎn)B移動(dòng),點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也同時(shí)停止運(yùn)動(dòng).線段OC,PQ相交于點(diǎn)D,過(guò)點(diǎn)D作DE∥OA,交CA于點(diǎn)E,射線QE交x軸于點(diǎn)F.設(shè)動(dòng)點(diǎn)P,Q移動(dòng)的時(shí)間為t(單位:秒)
(1)求A,B,C三點(diǎn)的坐標(biāo)和拋物線的頂點(diǎn)坐標(biāo);
(2)當(dāng)t為何值時(shí),四邊形PQCA為平行四邊形?請(qǐng)寫出計(jì)算過(guò)程;
(3)當(dāng)t∈(0,
9
4
)時(shí),△PQF的面積是否總為定值?若是,求出此定值;若不是,請(qǐng)說(shuō)明理由;
(4)當(dāng)t為何值時(shí),△PQF為等腰三角形?請(qǐng)寫出解答過(guò)程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,一個(gè)等腰直角三角形的硬紙片△ABC中,∠ACB=90°,AC=4cm,CD是斜邊上的高,沿CD把△ABC折成直二面角.
(1)如果你手中只有一把能夠量長(zhǎng)度的直尺,應(yīng)該如何確定A、B的位置,使得二面角A-CD-B是直二面角?證明你的結(jié)論.
(2)試在平面ABC上確定一點(diǎn)P,使DP與平面ABC內(nèi)任意一條直線垂直,證明你的結(jié)論.
(3)如果在折成的三棱錐內(nèi)有一個(gè)小球,求出球的半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣州二模)如圖,一個(gè)等腰直角三角形的直角邊長(zhǎng)為2,分別以三個(gè)頂點(diǎn)為 圓心,l為半徑在三角形內(nèi)作圓弧,三段圓弧與斜邊圍成區(qū)域M (圖中白色部分).若在此三角形內(nèi)隨機(jī)取一點(diǎn)P,則點(diǎn)P落在區(qū) 域M內(nèi)的概率為
1-
π
4
1-
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省廣州市畢業(yè)班綜合測(cè)試(二)文科數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,一個(gè)等腰直角三角形的直角邊長(zhǎng)為2,分別以三個(gè)頂點(diǎn)為圓心,1為半徑在三角形內(nèi)作圓弧,三段圓弧與斜邊圍成區(qū)域(圖中白色部分).若在此三角形內(nèi)隨機(jī)取一點(diǎn),則點(diǎn)落在區(qū)域內(nèi)的概率為     

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xoy中,拋物線yx 2x-10與x軸的交點(diǎn)為A,與y軸的交點(diǎn)為點(diǎn)B,過(guò)點(diǎn)Bx軸的平行線BC,交拋物線于點(diǎn)C,連結(jié)AC.現(xiàn)有兩動(dòng)點(diǎn)P,Q分別從O,C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P以每秒4個(gè)單位的速度沿OA向終點(diǎn)A移動(dòng),點(diǎn)Q以每秒1個(gè)單位的速度沿CB向點(diǎn)B移動(dòng),點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也同時(shí)停止運(yùn)動(dòng).線段OC,PQ相交于點(diǎn)D,過(guò)點(diǎn)DDEOA,交CA于點(diǎn)E,射線QEx軸于點(diǎn)F.設(shè)動(dòng)點(diǎn)P,Q移動(dòng)的時(shí)間為t(單位:秒)

(1)求A,B,C三點(diǎn)的坐標(biāo)和拋物線的頂點(diǎn)坐標(biāo);

(2)當(dāng)t為何值時(shí),四邊形PQCA為平行四邊形?請(qǐng)寫出計(jì)算過(guò)程;

(3)當(dāng)t∈(0,)時(shí),△PQF的面積是否總為定值?若是,求出此定值;若不是,請(qǐng)說(shuō)明理由;

(4)當(dāng)t為何值時(shí),△PQF為等腰三角形?請(qǐng)寫出解答過(guò)程.

 


查看答案和解析>>

同步練習(xí)冊(cè)答案