(2012•廣州二模)已知等差數(shù)列{an}的公差為2,項(xiàng)數(shù)是偶數(shù),所有奇數(shù)項(xiàng)之和為l5,所有偶數(shù)項(xiàng)之和為25,則這個(gè)數(shù)列的項(xiàng)數(shù)為(  )
分析:設(shè)這個(gè)數(shù)列的項(xiàng)數(shù)是2k,則奇數(shù)項(xiàng)之和=a1+a3+…+a2k-1=15,偶數(shù)項(xiàng)之和=a2+a4+…+a2k=25,故(a2-a1)+(a4-a3)+…+(a2k-a2k-1)=25-15=10,由等差數(shù)列{a2}的公差為2,能求出這個(gè)數(shù)列的項(xiàng)數(shù).
解答:解:設(shè)這個(gè)數(shù)列的項(xiàng)數(shù)是2k,
則奇數(shù)項(xiàng)之和=a1+a3+…+a2k-1=15,
偶數(shù)項(xiàng)之和=a2+a4+…+a2k=25,
∴(a2-a1)+(a4-a3)+…+(a2k-a2k-1)=25-15=10,
∵等差數(shù)列{a2}的公差為2,
∴2k=10,
∴這個(gè)數(shù)列的項(xiàng)數(shù)是10.
故選A.
點(diǎn)評(píng):本題考查等差數(shù)列的性質(zhì)和應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州二模)甲、乙、丙三種食物的維生素含量及成本如下表所示
食物類(lèi)型
維生索C(單位/kg) 300 500 300
維生素D(單位/kg) 700 100 300
成本(元/k) 5 4 3
某工廠欲將這三種食物混合成100kg的混合食物,設(shè)所用食物甲、乙、丙的重量分別為x kg、y kg、z kg.
(1)試以x、y表示混合食物的成本P;
(2)若混合食物至少需含35000單位維生素C及40000單位維生素D,問(wèn)x、y、z取什么值時(shí),混合食物的成本最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州二模)已知函數(shù)f(x)=(cosx+sinx)(cosx-sinx).
(1)求函數(shù)f(x)的最小正周期;
(2)若0<α<
π
2
,0<β<
π
2
,且f(
α
2
)=
1
3
,f(
β
2
)=
2
3
,求sin(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州二模)在平行四邊形ABCD中,點(diǎn)E是AD的中點(diǎn),BE與AC相交于點(diǎn)F,若
EF
=m
AB
+n
AD
(m,n∈R)
,則
m
n
的值為
-2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州二模)已知向量
OA
=(3,-4),
OB
=(6,-3),
OC
=(m,m+1),若
AB
OC
,則實(shí)數(shù)m的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廣州二模)已知函數(shù)f(x)=ex-e-x+1(e是自然對(duì)數(shù)的底數(shù)),若f(a)=2,則f(-a)的值為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案